1. |
Chakaya J, Khan M, Ntoumi F, et al. Global Tuberculosis Report 2020 - Reflections on the global TB burden, treatment and prevention efforts. IntJ Infect Dis, 2021, 113(Suppl 1): S7-S12.
|
2. |
Wu SS, Zhang YL, Sun F, et al. Adverse events associated with the treatment of multidrug-resistant tuberculosis: a systematic review and meta-analysis. Am J Ther, 2016, 23(2): e521-e530.
|
3. |
尤媛媛, 张国龙, 陈裕. 120例初治耐多药肺结核患者治疗依从性的影响因素分析. 中国防痨杂志, 2020, 42(3): 249-254.
|
4. |
Crawford E, Kamm J, Miller S, et al. Investigating transfusion-related sepsis using culture-independent metagenomic sequencing. Clin Infect Dis, 2020, 71(5): 1179-1185.
|
5. |
Chen YQ, Feng W, Ye K, et al. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary infectious pathogens from bronchoalveolar lavage samples. Front Cell Infect Microbiol, 2021, 11: 541092.
|
6. |
Votintseva AA, Bradley P, Pankhurst L, et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J Clin Microbiol, 2017, 55(5): 1285-1298.
|
7. |
Zhou X, Wu HL, Ruan QL, et al. Clinical evaluation of diagnosis efficacy of active Mycobacterium tuberculosis complex infection via metagenomic next-generation sequencing of direct clinical samples. Front Cell Infect Microbiol, 2019, 9: 351.
|
8. |
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. J Infect, 2020, 81(4): 567-574.
|
9. |
Luo W, Lin YH, Li ZB, et al. Comparison of sputum induction and bronchoscopy in diagnosis of sputum smear-negative pulmonary tuberculosis: a systemic review and meta-analysis. BMC Pulm Med, 2020, 20(1): 146.
|
10. |
Ai JW, Zhang HC, Cui P, et al. Dynamic and direct pathogen load surveillance to monitor disease progression and therapeutic efficacy in central nervous system infection using a novel semi-quantitive sequencing platform. J Infect, 2018, 76(3): 307-310.
|
11. |
Miao Q, Ma YY, Wang QQ, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice. Clin Infect Dis, 2018, 67(Suppl_2): S231-S240.
|
12. |
Doyle RM, Burgess C, Williams R, et al. Direct whole-genome sequencing of sputum accurately identifies drug-resistant Mycobacterium tuberculosis faster than MGIT culture sequencing. J Clin Microbiol, 2018, 56(8): e00666-18.
|
13. |
Takeuchi S, Kawada JI, Horiba K, et al. Metagenomic analysis using next-generation sequencing of pathogens in bronchoalveolar lavage fluid from pediatric patients with respiratory failure. Sci Rep, 2019, 9(1): 12909.
|
14. |
Li Y, Sun B, Tang X, et al. Application of metagenomic next-generation sequencing for bronchoalveolar lavage diagnostics in critically ill patients. Eur J Clin Microbiol Infect Dis, 2020, 39(2): 369-374.
|
15. |
Zhu N, Zhou DB, Li SQ. Diagnostic accuracy of metagenomic next-generation sequencing in sputum-scarce or smear-negative cases with suspected pulmonary tuberculosis. Biomed Res Int, 2021, 2021: 9970817.
|
16. |
Hogan JI, Hurtado RM, Nelson SB. Mycobacterial musculoskeletal infections. Thorac Surg Clin, 2019, 29(1): 85-94.
|
17. |
Khan FY, Aladab AH. Role of fiberoptic bronchoscopy in the rapid diagnosis of sputum smear-negative disseminated tuberculosis with pulmonary miliary infiltrates. Oman Med J, 2020, 35(1): e87.
|
18. |
Liu X, Chen YL, Ouyang H, et al. Tuberculosis diagnosis by metagenomic next-generation sequencing on bronchoalveolar lavage fluid: a cross-sectional analysis. Int J Infect Dis, 2021, 104: 50-57.
|
19. |
Nongrum S, Singh VA, Paul R, et al. A study about co-infection of fungal pathogens in active tuberculosis patients. Mymensingh Med J, 2019, 28(4): 920-924.
|
20. |
Ding L, Liu YM, Wu XR, et al. Pathogen metagenomics reveals distinct lung microbiota signatures between bacteriologically confirmed and negative tuberculosis patients. Front Cell Infect Microbiol, 2021, 11: 708827.
|
21. |
Langelier C, Zinter MS, Kalantar K, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients. Am J Respir Crit Care Med, 2018, 197(4): 524-528.
|
22. |
Li N, Cai QQ, Miao Q, et al. High-throughput metagenomics for identification of pathogens in the clinical settings. Small Methods, 2021, 5(1): 2000792.
|
23. |
Solovic I, Jonsson J, Korzeniewska-Koseła M, et al. Challenges in diagnosing extrapulmonary tuberculosis in the European Union, 2011. Euro Surveill, 2013, 18(12): 20432.
|
24. |
Pang Y, An J, Shu W, et al. Epidemiology of Extrapulmonary Tuberculosis among Inpatients, China, 2008-2017. Emerg Infect Dis, 2019, 25(3): 457-464.
|
25. |
Seddon JA, Wilkinson R, Van Crevel R, et al. Knowledge gaps and research priorities in tuberculous meningitis. Wellcome Open Res, 2019, 4: 188.
|
26. |
Leonard JM. Central nervous system tuberculosis. Microbiol Spectr, 2017, 5(2): TNMI7-0044-2017.
|
27. |
Yan LP, Sun WW, Lu ZH, et al. Metagenomic next-generation sequencing (mNGS) in cerebrospinal fluid for rapid diagnosis of tuberculosis meningitis in HIV-negative population. Int J Infect Dis, 2020, 96: 270-275.
|
28. |
Wang SN, Chen YL, Wang DM, et al. The feasibility of metagenomic next-generation sequencing to identify pathogens causing tuberculous meningitis in cerebrospinal fluid. Front Microbiol, 2019, 10: 1993.
|
29. |
Zhang Y, Cui P, Zhang HC, et al. Clinical application and evaluation of metagenomic next-generation sequencing in suspected adult central nervous system infection. J Transl Med, 2020, 18(1): 199.
|
30. |
Brown JR, Bharucha T, Breuer J, et al. Encephalitis diagnosis using metagenomics: application of next generation sequencing for undiagnosed cases. J Infect, 2018, 76(3): 225-240.
|
31. |
Chen YX, Wang YQ, Liu XJ, et al. Comparative diagnostic utility of metagenomic next-generation sequencing, GeneXpert, modified Ziehl-Neelsen staining, and culture using cerebrospinal fluid for tuberculous meningitis: A multi-center, retrospective study in China. J Clin Lab Anal, 2022, 36(4): e24307.
|
32. |
Yu GC, Wang XD, Zhu PF, et al. Comparison of the efficacy of metagenomic next-generation sequencing and Xpert MTB/RIF in the diagnosis of tuberculous meningitis. J Microbiol Methods, 2021, 180: 106124.
|
33. |
Chakravorty S, Simmons AM, Rowneki M, et al. The new Xpert MTB/RIF Ultra: improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. mBio, 2017, 8(4): e00812-17.
|
34. |
Huang ZD, Zhang CJ, Hu DQ, et al. Diagnosis of osteoarticular tuberculosis via metagenomic next-generation sequencing: a case report. Exp Ther Med, 2019, 18(2): 1184-1188.
|
35. |
Steingart KR, Ng V, Henry M, et al. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis, 2006, 6(10): 664-674.
|
36. |
Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet, 2011, 377(9776): 1495-1505.
|
37. |
Hogan CA, Yang S, Garner OB, et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study. Clin Infect Dis, 2021, 72(2): 239-245.
|
38. |
Park J, Shin SY, Kim K, et al. Determining genotypic drug resistance by ion semiconductor sequencing with the Ion AmpliSeqTM TB Panel in multidrug-resistant Mycobacterium tuberculosis isolates. Ann Lab Med, 2018, 38(4): 316-323.
|
39. |
Park J, Jang W, Kim M, et al. Molecular drug resistance profiles of Mycobacterium tuberculosis from sputum specimens using ion semiconductor sequencing. J Microbiol Methods, 2018, 145: 1-6.
|
40. |
Tagliani E, Cirillo DM, Kodmon C, et al. EUSeqMyTB to set standards and build capacity for whole genome sequencing for tuberculosis in the EU. Lancet Infect Dis, 2018, 18(4): 377-377.
|
41. |
Laxminarayan R, Dune A, Wattal C. Antibiotic resistance-the need for global solutions. Lancet Infect Dis, 2013, 13(12): 1057-1098.
|
42. |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8): 2031-2043.
|
43. |
Petrella S, Cambau E, Chauffour A, et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother, 2006, 50(8): 2853-2856.
|
44. |
Zhu YM, Ai JW, Xu B, et al. Rapid and precise diagnosis of disseminated T. marneffei infection assisted by high-throughput sequencing of multifarious specimens in a HIV-negative patient: a case report. BMC Infect Dis, 2018, 18(1): 379.
|
45. |
Chiang AD, Dekker JP. From the pipeline to the bedside: advances and challenges in clinical metagenomics. J Infect Dis, 2020, 221(Suppl 3): S331-S340.
|
46. |
Gutierrez M C, Brisse S, Brosch R, et al. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog, 2005, 1(1): e5.
|
47. |
Zhang P, Chen Y, Li SY, et al. Metagenomic next-generation sequencing for the clinical diagnosis and prognosis of acute respiratory distress syndrome caused by severe pneumonia: a retrospective study. Peer J, 2020, 8: e9623.
|