1. |
Loomis-King H, Flaherty KR, Moore BB. Pathogenesis, current treatments and future directions for idiopathic pulmonary fibrosis. Curr Opin Pharmacol, 2013, 13(3): 377-385.
|
2. |
Lawson WE, Cheng DS, Degryse AL, et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A, 2011, 108(26): 10562-10567.
|
3. |
Korfei M, Ruppert C, Mahavadi P, et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2008, 178(8): 838-846.
|
4. |
Qiu H, Weng D, Chen T, et al. Stimulator of interferon genes deficiency in acute exacerbation of idiopathic pulmonary fibrosis. Front Immunol, 2017, 8: 1756.
|
5. |
Chen T, Qiu H, Zhao MM, et al. IL-17A contributes to HSV1 infection-induced acute lung injury in a mouse model of pulmonary fibrosis. J Cell Mol Med, 2019, 23(2): 908-919.
|
6. |
Lichter-Konecki U, Diaz GA, Merritt JL 2nd, et al. Ammonia control in children with urea cycle disorders (UCDs); phase 2 comparison of sodium phenylbutyrate and glycerol phenylbutyrate. Mol Genet Metab, 2011, 103(4): 323-329.
|
7. |
Ricobaraza A, Cuadrado-Tejedor M, Garcia-Osta A. Long-term phenylbutyrate administration prevents memory deficits in Tg2576 mice by decreasing Aβ. Front Biosci (Elite Ed), 2011, 3(4): 1375-1384.
|
8. |
Carlisle RE, Brimble E, Werner KE, et al. 4 phenylbutyrate inhibits tunicamycin induced acute kidney injury via CHOP/GADD153 repression. PLoS One, 2014, 9(1): e84663.
|
9. |
Luo T, Chen BH, Wang XB. 4-PBA prevents pressure overload-induced myocardial hypertrophy and interstitial fibrosis by attenuating endoplasmic reticulum stress. Chem Biol Interact, 2015, 242: 99-106.
|
10. |
Koyama M, Furuhashi M, Ishimura S, et al. Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol, 2014, 306(9): H1314-H1323.
|
11. |
Ayala P, Montenegro J, Vivar R, et al. Attenuation of endoplasmic reticulum stress using the chemical chaperone 4-phenylbutyric acid prevents cardiac fibrosis induced by isoproterenol. Exp Mol Pathol, 2012, 92(1): 97-104.
|
12. |
Liu SH, Yang CC, Chan DC, et al. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget, 2016, 7(16): 22116-22127.
|
13. |
Durante W. Targeting endoplasmic reticulum stress in hypoxia-induced cardiac injury. Vascul Pharmacol, 2016, 83: 1-3.
|
14. |
王国辽, 张洁, 饶家榕, 等. 博来霉素致小鼠肺纤维化模型的建立及生物标志物的筛选. 畜牧兽医学报, 2021, 52(4): 1134-1140.
|
15. |
Lee HY, Marahatta A, Bhandary B, et al. 4-Phenylbutyric acid regulates CCl4-induced acute hepatic dyslipidemia in a mouse model: a mechanism-based PK/PD study. Eur J Pharmacol, 2016, 777: 104-112.
|
16. |
Sisson TH, Hansen JM, Shah M, et al. Expression of the reverse tetracycline-transactivator gene causes emphysema-like changes in mice. Am J Respir Cell Mol Biol, 2006, 34(5): 552-560.
|
17. |
Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary. J Clin Pathol, 1988, 41(4): 467-470.
|
18. |
Snyder L, Neely ML, Hellkamp AS, et al. Predictors of death or lung transplant after a diagnosis of idiopathic pulmonary fibrosis: insights from the IPF-PRO Registry. Respir Res, 2019, 20(1): 105.
|
19. |
Williamson JD, Sadofsky LR, Hart SP. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res, 2015, 41(2): 57-73.
|
20. |
Della Latta V, Cecchettini A, Del Ry S, et al. Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res, 2015, 97: 122-130.
|
21. |
Grootjans J, Kaser A, Kaufman RJ, et al. The unfolded protein response in immunity and inflammation. Nat Rev Immunol, 2016, 16(8): 469-484.
|
22. |
Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2012, 302(8): L721-L729.
|
23. |
Nogee LM, Dunbar AE 3rd, Wert SE, et al. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med, 2001, 344(8): 573-579.
|
24. |
Xu PF, Yao YK, Zhou JY. Particulate matter with a diameter of ≤2.5 μm induces and enhances bleomycin-induced pulmonary fibrosis by stimulating endoplasmic reticulum stress in rat. Biochem Cell Biol, 2019, 97(4): 357-363.
|
25. |
Thomas AQ, Lane K, Phillips J 3rd, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med, 2002, 165(9): 1322-1328.
|
26. |
Lawson WE, Crossno PF, Polosukhin VV, et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol, 2008, 294(6): L1119-L1126.
|
27. |
Baek HA, Kim DS, Park HS, et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol, 2012, 46(6): 731-739.
|
28. |
王艳勋, 徐作军. 内质网应激与特发性肺纤维化. 中华医学杂志, 2013, 93(44): 3563-3565.
|
29. |
Zhao H, Qin HY, Cao LF, et al. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis. Toxicol Lett, 2015, 232(1): 213-220.
|
30. |
McMillan TR, Moore BB, Weinberg JB, et al. Exacerbation of established pulmonary fibrosis in a murine model by gammaherpesvirus. Am J Respir Crit Care Med, 2008, 177(7): 771-780.
|