Citation: 姚庆美, 陈玥, 黎友伦, 王丹. 重症哮喘气道上皮细胞损伤机制及潜在生物治疗靶点. Chinese Journal of Respiratory and Critical Care Medicine, 2022, 21(12): 899-903. doi: 10.7507/1671-6205.202208033 Copy
1. | GINA. Global Strategy for Asthma Management and Prevention-Updated 2022[EB/OL]. [2022-04-03] Available at: www. ginasthma. org. |
2. | Enilari O, Sinha S. The global impact of asthma in adult populations. Ann Glob Health, 2019, 85(1): 2. |
3. | Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS Guidelines on Definition, Evaluation and Treatment of Severe Asthma. Eur Respir J, 2014, 43(2): 343-373. |
4. | Bourdin A, Fabry-Vendrand C, Ostinelli J, et al. The burden of severe asthma in France: a case-control study using a medical claims database. J Allergy Clin Immunol Pract, 2019, 7(5): 1477-1487. |
5. | Xiao C, Puddicombe SM, Field S, et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol, 2011, 128(3): 549-556,e1-12. |
6. | Vieira Braga FA, Kar G, Berg M, et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med, 2019, 25(7): 1153-1163. |
7. | Frey A, Lunding LP, Ehlers JC, et al. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis. Front Immunol, 2020, 11: 761. |
8. | Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol, 2018, 10(1): a029314. |
9. | Lee PH, Kim BG, Lee SH, et al. Alteration in claudin-4 contributes to airway inflammation and responsiveness in asthma. Allergy Asthma Immunol Res, 2018, 10(1): 25-33. |
10. | Yang YM, Jia M, Ou YW, et al. Mechanisms and biomarkers of airway epithelial cell damage in asthma: a review. Clin Respir J, 2021, 15(10): 1027-1045. |
11. | Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res, 2019, 68(1): 59-74. |
12. | Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol, 2014, 134: 509-520. |
13. | Potaczek DP, Miethe S, Schindler V, et al. Role of airway epithelial cells in the development of different asthma phenotypes. Cell Signal, 2020, 69: 109523. |
14. | Lachowicz-Scroggins ME, Yuan SP, Kerr SC, et al. Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma. Am J Respir Crit Care Med, 2016, 194(10): 1296-1299. |
15. | Pardo-Saganta A, Law BM, Gonzalez-Celeiro M, et al. Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge. Am J Respir Cell Mol Biol, 2013, 48(3): 364-373. |
16. | Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol, 2020, 145(6): 1499-1509. |
17. | Kardas G, Kuna P, Panek M. Biological therapies of severe asthma and their possible effects on airway remodeling. Front Immunol, 2020, 11: 1134. |
18. | Yagi R, Zhu JF, Paul WE. An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int Immunol, 2011, 23(7): 415-420. |
19. | Kiwamoto T, Ishii Y, Morishima Y, et al. Transcription factors T-bet and GATA-3 regulate development of airway remodeling. Am J Respir Crit Care Med, 2006, 174(2): 142-151. |
20. | Liang Z, Luo ZC, Chen J, et al. Bavachin inhibits IL-4 expression by downregulating STAT6 phosphorylation and GATA-3 expression and ameliorates asthma inflammation in an animal model. Immunobiology, 2022, 227(2): 152182. |
21. | 王丹, 杨丹, 王小虎, 等. 支气管哮喘发病中的固有免疫机制. 中华结核和呼吸杂志, 2018, 41(3): 228-231. |
22. | Kuruvilla ME, Lee FE, Lee GB. Understanding asthma pheno-types, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol, 2019, 56(2): 219-233. |
23. | Liang YS, Yu BH, Chen JC, et al. Thymic stromal lymphopoietin epigenetically upregulates Fc receptor γ subunit-related receptors on antigen-presenting cells and induces TH2/TH17 polarization through dectin-2. J Allergy Clin Immunol, 2019, 144(4): 1025-1035, e7. |
24. | Ray A, Kolls JK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol, 2017, 38(12): 942-954. |
25. | Gauvreau GM, Sehmi R, Ambrose CS, et al. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets, 2020, 24(8): 777-792. |
26. | Li Y, Wang W, Lv Z, et al. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J Immunol, 2018, 200(7): 2253-2262. |
27. | Kouzaki H, Tojima I, Kita H, et al. Transcription of interleukin-25 and extracellular release of the protein is regulated by allergen proteases in airway epithelial cells. Am J Respir Cell Mol Biol, 2013, 49(5): 741-750. |
28. | Hurst SD, Muchamuel T, Gorman DM, et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol, 2002, 169(1): 443-453. |
29. | Saikumar Jayalatha AK, Hesse L, Ketelaar ME, et al. The central role of IL-33/IL-1RL1 pathway in asthma: from pathogenesis to intervention. Pharmacol Ther, 2021, 225: 107847. |
30. | Bahrami Mahneh S, Movahedi M, Aryan Z, et al. Serum IL-33 is elevated in children with asthma and is associated with disease severity. Int Arch Allergy Immunol, 2015, 168(3): 193-196. |
31. | Xie Y, Abel PW, Casale TB, et al. TH17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol, 2022, 149(2): 467-479. |
32. | Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006, 126(6): 1121-1133. |
33. | Ramakrishnan RK, Al Heialy S, Hamid Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med, 2019, 13(11): 1057-1068. |
34. | Chang Y, Al-Alwan L, Risse PA, et al. Th17-associated cytokines promote human airway smooth muscle cell proliferation. FASEB J, 2012, 26(12): 5152-5160. |
35. | Chien JW, Lin CY, Yang KD, et al. Increased IL-17A secreting CD4+ T cells, serum IL-17 levels and exhaled nitric oxide are correlated with childhood asthma severity. Clin Exp Allergy, 2013, 43(9): 1018-1026. |
36. | Chen RC, Zhang QL, Chen SY, et al. IL-17F, rather than IL-17A, underlies airway inflammation in a steroid-insensitive toluene diisocyanate-induced asthma model. Eur Respir J, 2019, 53(4): 1801510. |
37. | Chang Y, Al-Alwan L, Risse PA, et al. TH17 cytokines induce human airway smooth muscle cell migration. J Allergy Clin Immunol, 2011, 127(4): 1046-1053,e1-e2. |
38. | Lamb D, De Sousa D, Quast K, et al. RORγt inhibitors block both IL-17 and IL-22 conferring a potential advantage over anti-IL-17 alone to treat severe asthma. Respir Res, 2021, 22(1): 158. |
39. | Takahashi K, Hirose K, Kawashima S, et al. IL-22 attenuates IL-25 production by lung epithelial cells and inhibits antigen-induced eosinophilic airway inflammation. J Allergy Clin Immunol, 2011, 128(5): 1067-1076. e6. |
40. | Hirose K, Ito T, Nakajima H. Roles of IL-22 in allergic airway inflammation in mice and humans. Int Immunol, 2018, 30(9): 413-418. |
41. | Pelaia C, Crimi C, Vatrella A, et al. Molecular targets for biological therapies of severe asthma. Front Immunol, 2020, 11: 603312. |
42. | Pelaia C, Pelaia G, Crimi C, et al. Tezepelumab: a potential new biological therapy for severe refractory asthma. Int J Mol Sci, 2021, 22(9): 4369. |
43. | Verstraete K, Peelman F, Braun H, et al. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nat Commun, 2017, 8: 14937. |
44. | Corren J, Parnes JR, Wang LW, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med, 2017, 377(10): 936-946. |
45. | Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med, 2021, 384(19): 1800-1809. |
46. | Nian SJ, Zhu JG, Yu H, et al. Development and identification of a fully human single-chain variable fragment 29 against TSLP. Biotechnol Appl Biochem, 2019, 66(4): 510-516. |
47. | Mitchell PD, O’Byrne PM. Epithelial-derived cytokines in asthma. Chest, 2017, 151(6): 1338-1344. |
48. | Chen YL, Gutowska-Owsiak D, Hardman CS, et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci Transl Med, 2019, 11(515): eaax2945. |
49. | Chinthrajah S, Cao S, Liu C, et al. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. JCI Insight, 2019, 4(22): e131347. |
50. | Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma. N Engl J Med, 2021, 385(18): 1656-1668. |
51. | Wang YB, Zhang ST, Li HY, et al. Small-molecule modulators of toll-like receptors. Acc Chem Res, 2020, 53(5): 1046-1055. |
52. | Aryan Z, Rezaei N. Toll-like receptors as targets for allergen immunotherapy. Curr Opin Allergy Clin Immunol, 2015, 15(6): 568-574. |
53. | Pfaar O, Barth C, Jaschke C, et al. Sublingual allergen-specific immunotherapy adjuvanted with monophosphoryl lipid A: a phase I/IIa study. Int Arch Allergy Immunol, 2011, 154(4): 336-344. |
54. | Musarra A, Bignardi D, Troise C, et al. Long-lasting effect of a monophosphoryl lipid-adjuvanted immunotherapy to parietaria. A controlled field study. Eur Ann Allergy Clin Immunol, 2010, 42: 115-119. |
55. | Beeh KM, Kanniess F, Wagner F, et al. The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. J Allergy Clin Immunol, 2013, 131(3): 866-874. |
56. | Gauvreau GM, Hessel EM, Boulet LP, et al. Immunostimulatory sequences regulate interferon-inducible genes but not allergic airway responses. Am J Respir Crit Care Med, 2006, 174(1): 15-20. |
- 1. GINA. Global Strategy for Asthma Management and Prevention-Updated 2022[EB/OL]. [2022-04-03] Available at: www. ginasthma. org.
- 2. Enilari O, Sinha S. The global impact of asthma in adult populations. Ann Glob Health, 2019, 85(1): 2.
- 3. Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS Guidelines on Definition, Evaluation and Treatment of Severe Asthma. Eur Respir J, 2014, 43(2): 343-373.
- 4. Bourdin A, Fabry-Vendrand C, Ostinelli J, et al. The burden of severe asthma in France: a case-control study using a medical claims database. J Allergy Clin Immunol Pract, 2019, 7(5): 1477-1487.
- 5. Xiao C, Puddicombe SM, Field S, et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol, 2011, 128(3): 549-556,e1-12.
- 6. Vieira Braga FA, Kar G, Berg M, et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med, 2019, 25(7): 1153-1163.
- 7. Frey A, Lunding LP, Ehlers JC, et al. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis. Front Immunol, 2020, 11: 761.
- 8. Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol, 2018, 10(1): a029314.
- 9. Lee PH, Kim BG, Lee SH, et al. Alteration in claudin-4 contributes to airway inflammation and responsiveness in asthma. Allergy Asthma Immunol Res, 2018, 10(1): 25-33.
- 10. Yang YM, Jia M, Ou YW, et al. Mechanisms and biomarkers of airway epithelial cell damage in asthma: a review. Clin Respir J, 2021, 15(10): 1027-1045.
- 11. Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res, 2019, 68(1): 59-74.
- 12. Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol, 2014, 134: 509-520.
- 13. Potaczek DP, Miethe S, Schindler V, et al. Role of airway epithelial cells in the development of different asthma phenotypes. Cell Signal, 2020, 69: 109523.
- 14. Lachowicz-Scroggins ME, Yuan SP, Kerr SC, et al. Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma. Am J Respir Crit Care Med, 2016, 194(10): 1296-1299.
- 15. Pardo-Saganta A, Law BM, Gonzalez-Celeiro M, et al. Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge. Am J Respir Cell Mol Biol, 2013, 48(3): 364-373.
- 16. Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol, 2020, 145(6): 1499-1509.
- 17. Kardas G, Kuna P, Panek M. Biological therapies of severe asthma and their possible effects on airway remodeling. Front Immunol, 2020, 11: 1134.
- 18. Yagi R, Zhu JF, Paul WE. An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int Immunol, 2011, 23(7): 415-420.
- 19. Kiwamoto T, Ishii Y, Morishima Y, et al. Transcription factors T-bet and GATA-3 regulate development of airway remodeling. Am J Respir Crit Care Med, 2006, 174(2): 142-151.
- 20. Liang Z, Luo ZC, Chen J, et al. Bavachin inhibits IL-4 expression by downregulating STAT6 phosphorylation and GATA-3 expression and ameliorates asthma inflammation in an animal model. Immunobiology, 2022, 227(2): 152182.
- 21. 王丹, 杨丹, 王小虎, 等. 支气管哮喘发病中的固有免疫机制. 中华结核和呼吸杂志, 2018, 41(3): 228-231.
- 22. Kuruvilla ME, Lee FE, Lee GB. Understanding asthma pheno-types, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol, 2019, 56(2): 219-233.
- 23. Liang YS, Yu BH, Chen JC, et al. Thymic stromal lymphopoietin epigenetically upregulates Fc receptor γ subunit-related receptors on antigen-presenting cells and induces TH2/TH17 polarization through dectin-2. J Allergy Clin Immunol, 2019, 144(4): 1025-1035, e7.
- 24. Ray A, Kolls JK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol, 2017, 38(12): 942-954.
- 25. Gauvreau GM, Sehmi R, Ambrose CS, et al. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets, 2020, 24(8): 777-792.
- 26. Li Y, Wang W, Lv Z, et al. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J Immunol, 2018, 200(7): 2253-2262.
- 27. Kouzaki H, Tojima I, Kita H, et al. Transcription of interleukin-25 and extracellular release of the protein is regulated by allergen proteases in airway epithelial cells. Am J Respir Cell Mol Biol, 2013, 49(5): 741-750.
- 28. Hurst SD, Muchamuel T, Gorman DM, et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol, 2002, 169(1): 443-453.
- 29. Saikumar Jayalatha AK, Hesse L, Ketelaar ME, et al. The central role of IL-33/IL-1RL1 pathway in asthma: from pathogenesis to intervention. Pharmacol Ther, 2021, 225: 107847.
- 30. Bahrami Mahneh S, Movahedi M, Aryan Z, et al. Serum IL-33 is elevated in children with asthma and is associated with disease severity. Int Arch Allergy Immunol, 2015, 168(3): 193-196.
- 31. Xie Y, Abel PW, Casale TB, et al. TH17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol, 2022, 149(2): 467-479.
- 32. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006, 126(6): 1121-1133.
- 33. Ramakrishnan RK, Al Heialy S, Hamid Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med, 2019, 13(11): 1057-1068.
- 34. Chang Y, Al-Alwan L, Risse PA, et al. Th17-associated cytokines promote human airway smooth muscle cell proliferation. FASEB J, 2012, 26(12): 5152-5160.
- 35. Chien JW, Lin CY, Yang KD, et al. Increased IL-17A secreting CD4+ T cells, serum IL-17 levels and exhaled nitric oxide are correlated with childhood asthma severity. Clin Exp Allergy, 2013, 43(9): 1018-1026.
- 36. Chen RC, Zhang QL, Chen SY, et al. IL-17F, rather than IL-17A, underlies airway inflammation in a steroid-insensitive toluene diisocyanate-induced asthma model. Eur Respir J, 2019, 53(4): 1801510.
- 37. Chang Y, Al-Alwan L, Risse PA, et al. TH17 cytokines induce human airway smooth muscle cell migration. J Allergy Clin Immunol, 2011, 127(4): 1046-1053,e1-e2.
- 38. Lamb D, De Sousa D, Quast K, et al. RORγt inhibitors block both IL-17 and IL-22 conferring a potential advantage over anti-IL-17 alone to treat severe asthma. Respir Res, 2021, 22(1): 158.
- 39. Takahashi K, Hirose K, Kawashima S, et al. IL-22 attenuates IL-25 production by lung epithelial cells and inhibits antigen-induced eosinophilic airway inflammation. J Allergy Clin Immunol, 2011, 128(5): 1067-1076. e6.
- 40. Hirose K, Ito T, Nakajima H. Roles of IL-22 in allergic airway inflammation in mice and humans. Int Immunol, 2018, 30(9): 413-418.
- 41. Pelaia C, Crimi C, Vatrella A, et al. Molecular targets for biological therapies of severe asthma. Front Immunol, 2020, 11: 603312.
- 42. Pelaia C, Pelaia G, Crimi C, et al. Tezepelumab: a potential new biological therapy for severe refractory asthma. Int J Mol Sci, 2021, 22(9): 4369.
- 43. Verstraete K, Peelman F, Braun H, et al. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nat Commun, 2017, 8: 14937.
- 44. Corren J, Parnes JR, Wang LW, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med, 2017, 377(10): 936-946.
- 45. Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med, 2021, 384(19): 1800-1809.
- 46. Nian SJ, Zhu JG, Yu H, et al. Development and identification of a fully human single-chain variable fragment 29 against TSLP. Biotechnol Appl Biochem, 2019, 66(4): 510-516.
- 47. Mitchell PD, O’Byrne PM. Epithelial-derived cytokines in asthma. Chest, 2017, 151(6): 1338-1344.
- 48. Chen YL, Gutowska-Owsiak D, Hardman CS, et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci Transl Med, 2019, 11(515): eaax2945.
- 49. Chinthrajah S, Cao S, Liu C, et al. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. JCI Insight, 2019, 4(22): e131347.
- 50. Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma. N Engl J Med, 2021, 385(18): 1656-1668.
- 51. Wang YB, Zhang ST, Li HY, et al. Small-molecule modulators of toll-like receptors. Acc Chem Res, 2020, 53(5): 1046-1055.
- 52. Aryan Z, Rezaei N. Toll-like receptors as targets for allergen immunotherapy. Curr Opin Allergy Clin Immunol, 2015, 15(6): 568-574.
- 53. Pfaar O, Barth C, Jaschke C, et al. Sublingual allergen-specific immunotherapy adjuvanted with monophosphoryl lipid A: a phase I/IIa study. Int Arch Allergy Immunol, 2011, 154(4): 336-344.
- 54. Musarra A, Bignardi D, Troise C, et al. Long-lasting effect of a monophosphoryl lipid-adjuvanted immunotherapy to parietaria. A controlled field study. Eur Ann Allergy Clin Immunol, 2010, 42: 115-119.
- 55. Beeh KM, Kanniess F, Wagner F, et al. The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. J Allergy Clin Immunol, 2013, 131(3): 866-874.
- 56. Gauvreau GM, Hessel EM, Boulet LP, et al. Immunostimulatory sequences regulate interferon-inducible genes but not allergic airway responses. Am J Respir Crit Care Med, 2006, 174(1): 15-20.
-
Previous Article
AMPK在支气管哮喘中的作用及其研究进展 -
Next Article
慢性阻塞性肺疾病过度充气的研究进展