Citation: 翟丽颖, 丛金鹏, 糜丽云, 巩海红, 于文成. PD-1/PD-L1轴在慢性阻塞性肺疾病中的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(1): 69-75. doi: 10.7507/1671-6205.202211038 Copy
1. | Viegi G, Maio S, Fasola S, et al. Global burden of chronic respiratory diseases. J Aerosol Med Pulm Drug Deliv, 2020, 33(4): 171-177. |
2. | Aghapour M, Raee P, Moghaddam SJ, et al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am J Respir Cell Mol Biol, 2018, 58(2): 157-169. |
3. | Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo J, 1992, 11(11): 3887-3895. |
4. | Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 2004, 20(3): 337-347. |
5. | Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol, 1996, 8(5): 765-772. |
6. | Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol, 2002, 169(10): 5538-5545. |
7. | Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med, 2016, 375(18): 1767-1778. |
8. | Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol, 2004, 173(2): 945-954. |
9. | Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 2000, 192(7): 1027-1034. |
10. | Dong HD, Zhu GF, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med, 1999, 5(12): 1365-1369. |
11. | Lin DY, Tanaka Y, Iwasaki M, et al. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci U S A, 2008, 105(8): 3011-3016. |
12. | Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008, 26: 677-704. |
13. | Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity, 2018, 48(3): 434-452. |
14. | Krogsgaard M, Huppa JB, Purbhoo MA, et al. Linking molecular and cellular events in T-cell activation and synapse formation. Semin Immunol, 2003, 15(6): 307-315. |
15. | Lee GR. The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci, 2018, 19(3). |
16. | Esensten JH, Helou YA, Chopra G, et al. CD28 Costimulation: From Mechanism to Therapy. Immunity, 2016, 44(5): 973-988. |
17. | Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med, 2012, 209(6): 1201-1217. |
18. | Wang Q, Bardhan K, Boussiotis VA, et al. The PD-1 Interactome. Adv Biol (Weinh), 2021, 5(9): e2100758. |
19. | Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett, 2004, 574(1-3): 37-41. |
20. | Carter L, Fouser LA, Jussif J, et al. PD-1: PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol, 2002, 32(3): 634-643. |
21. | Wei F, Zhong S, Ma Z, et al. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A, 2013, 110(27): E2480-2489. |
22. | Cosio MG, Majo J, Cosio MG. Inflammation of the airways and lung parenchyma in COPD: role of T cells. Chest, 2002, 121(5 Suppl): 160s-165s. |
23. | Williams M, Todd I, Fairclough LC. The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflamm Res, 2021, 70(1): 11-18. |
24. | Zhuang H, Li N, Chen SD, et al. Correlation between level of autophagy and frequency of CD8+ T cells in patients with chronic obstructive pulmonary disease. J Int Med Res, 2020, 48(9): 300060520952638. |
25. | Motz GT, Eppert BL, Sun GY, et al. Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J Immunol, 2008, 181(11): 8036-8043. |
26. | Saetta M, Di Stefano A, Turato G, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 1998, 157(3 Pt 1): 822-826. |
27. | Roos-Engstrand E, Ekstrand-Hammarström B, Pourazar J, et al. Influence of smoking cessation on airway T lymphocyte subsets in COPD. COPD, 2009, 6(2): 112-120. |
28. | Zhu J, Mallia P, Footitt J, et al. Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD. J Allergy Clin Immunol, 2020, 146(4): 840-850. e847. |
29. | Kojima H, Shinohara N, Hanaoka S, et al. Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity, 1994, 1(5): 357-364. |
30. | Maeno T, Houghton AM, Quintero PA, et al. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol, 2007, 178(12): 8090-8096. |
31. | Paats MS, Bergen IM, Hoogsteden HC, et al. Systemic CD4+ and CD8+ T-cell cytokine profiles correlate with GOLD stage in stable COPD. Eur Respir J, 2012, 40(2): 330-337. |
32. | Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J, 2001, 17(5): 946-953. |
33. | O'Shaughnessy TC, Ansari TW, Barnes NC, et al. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med, 1997, 155(3): 852-857. |
34. | Majori M, Corradi M, Caminati A, et al. Predominant TH1 cytokine pattern in peripheral blood from subjects with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 1999, 103(3 Pt 1): 458-462. |
35. | Sun J, Liu T, Yan Y, et al. The role of Th1/Th2 cytokines played in regulation of specific CD4 (+) Th1 cell conversion and activation during inflammatory reaction of chronic obstructive pulmonary disease. Scand J Immunol, 2018, 88(1): e12674. |
36. | Uzeloto JS, de Toledo-Arruda AC, Silva BSA, et al. Systemic cytokine profiles of CD4+ T lymphocytes correlate with clinical features and functional status in stable COPD. Int J Chron Obstruct Pulmon Dis, 2020, 15: 2931-2940. |
37. | Lee SH, Goswami S, Grudo A, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med, 2007, 13(5): 567-569. |
38. | Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol, 2018, 73: 34-51. |
39. | Lourenço JD, Ito JT, Martins MA, et al. Th17/Treg imbalance in chronic obstructive pulmonary disease: clinical and experimental evidence. Front Immunol, 2021, 12: 804919. |
40. | Wang HY, Ying HJ, Wang S, et al. Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J, 2015, 9(3): 330-341. |
41. | Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med, 2008, 359(22): 2355-2365. |
42. | Fujimoto K, Yasuo M, Urushibata K, et al. Airway inflammation during stable and acutely exacerbated chronic obstructive pulmonary disease. Eur Respir J, 2005, 25(4): 640-646. |
43. | Mercer PF, Shute JK, Bhowmik A, et al. MMP-9, TIMP-1 and inflammatory cells in sputum from COPD patients during exacerbation. Respir Res, 2005, 6(1): 151. |
44. | Xue WL, Ma JY, Li Y, et al. Role of CD4+ T and CD8+ T lymphocytes-mediated cellular immunity in pathogenesis of chronic obstructive pulmonary disease. J Immunol Res, 2022, 2022: 1429213. |
45. | Stoll P, Ulrich M, Bratke K, et al. Imbalance of dendritic cell co-stimulation in COPD. Respir Res, 2015, 16(1): 19. |
46. | Rui C, Defu L, Lingling W, et al. Cigarette smoke or motor vehicle exhaust exposure induces PD-L1 upregulation in lung epithelial cells in COPD model rats. COPD, 2022, 19(1): 206-215. |
47. | Kalathil SG, Lugade AA, Pradhan V, et al. T-regulatory cells and programmed death 1+ T cells contribute to effector T-cell dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2014, 190(1): 40-50. |
48. | McKendry RT, Spalluto CM, Burke H, et al. Dysregulation of antiviral function of CD8(+) T cells in the chronic obstructive pulmonary disease lung. Role of the PD-1-PD-L1 axis. Am J Respir Crit Care Med, 2016, 193(6): 642-651. |
49. | Tan DBA, Teo TH, Setiawan AM, et al. Impaired Th1 responses in patients with acute exacerbations of COPD are improved with PD-1 blockade. Clin Immunol, 2018, 188: 64-66. |
50. | Huang J, Yi H, Zhao C, et al. Glucagon-like peptide-1 receptor (GLP-1R) signaling ameliorates dysfunctional immunity in COPD patients. Int J Chron Obstruct Pulmon Dis, 2018, 13: 3191-3202. |
51. | Ritzmann F, Borchardt K, Vella G, et al. Blockade of PD-1 decreases neutrophilic inflammation and lung damage in experimental COPD. Am J Physiol Lung Cell Mol Physiol, 2021, 320(5): L958-l968. |
52. | Li L, Yan J, Ma LQ, et al. Effects of Maxingloushi decoction on immune inflammation and programmed death markers in mice with chronic obstructive pulmonary disease. World J Emerg Med, 2022, 13(1): 32-37. |
53. | Wherry EJ. T cell exhaustion. Nat Immunol, 2011, 12(6): 492-499. |
54. | Tang ZS, Hao YH, Zhang EJ, et al. CD28 family of receptors on T cells in chronic HBV infection: expression characteristics, clinical significance and correlations with PD-1 blockade. Mol Med Rep, 2016, 14(2): 1107-1116. |
55. | Tóth I, Le AQ, Hartjen P, et al. Decreased frequency of CD73+CD8+ T cells of HIV-infected patients correlates with immune activation and T cell exhaustion. J Leukoc Biol, 2013, 94(4): 551-561. |
56. | Dolina JS, Van Braeckel-Budimir N, Thomas GD, et al. CD8(+) T cell exhaustion in cancer. Front Immunol, 2021, 12: 715234. |
57. | Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439(7077): 682-687. |
58. | Fernandes JR, Pinto TNC, Arruda LB, et al. Age-associated phenotypic imbalance in TCD4 and TCD8 cell subsets: comparison between healthy aged, smokers, COPD patients and young adults. Immun Ageing, 2022, 19(1): 9. |
59. | Song DL, Yan FR, Fu HR, et al. A cellular census of human peripheral immune cells identifies novel cell states in lung diseases. Clin Transl Med, 2021, 11(11): e579. |
60. | Erickson JJ, Rogers MC, Hastings AK, et al. Programmed death-1 impairs secondary effector lung CD8+ T cells during respiratory virus reinfection. J Immunol, 2014, 193(10): 5108-5117. |
61. | Erickson JJ, Gilchuk P, Hastings AK, et al. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J Clin Invest, 2012, 122(8): 2967-2982. |
62. | Gaber T, Strehl C, Buttgereit F. Metabolic regulation of inflammation. Nat Rev Rheumatol, 2017, 13(5): 267-279. |
63. | Agarwal AR, Kadam S, Brahme A, et al. Systemic Immuno-metabolic alterations in chronic obstructive pulmonary disease (COPD). Respir Res, 2019, 20(1): 171. |
64. | O'Beirne SL, Kikkers SA, Oromendia C, et al. Alveolar macrophage immunometabolism and lung function impairment in smoking and chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2020, 201(6): 735-739. |
65. | Sadiku P, Willson JA, Ryan EM, et al. Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis. Cell Metab, 2021, 33(2): 411-423. |
66. | Agarwal AR, Zhao L, Sancheti H, et al. Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs. Am J Physiol Lung Cell Mol Physiol, 2012, 303(10): L889-L898. |
67. | Agarwal AR, Yin F, Cadenas E. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am J Respir Cell Mol Biol, 2014, 51(2): 284-293. |
68. | Fujii W, Kapellos TS, Baßler K, et al. Alveolar macrophage transcriptomic profiling in COPD shows major lipid metabolism changes. ERJ Open Res, 2021, 7(3). |
69. | Boussiotis VA, Patsoukis N. Effects of PD-1 signaling on immunometabolic reprogramming. Immunometabolism, 2022, 4(2): e220007. |
70. | Chowdhury PS, Chamoto K, Kumar A, et al. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8(+) T cells and facilitates anti-PD-1 therapy. Cancer Immunol Res, 2018, 6(11): 1375-1387. |
71. | Song DL, Liu FM, Zhu BJ, et al. Global immunometabolic profiling of AECOPD. Small Methods, 2020, 4(12): 2000483. |
72. | 中国抗癌协会肿瘤病理专业委员会, 中国临床肿瘤学会肿瘤病理专家委员会, 中国临床肿瘤学会非小细胞肺癌专家委员会. 中国非小细胞肺癌PD-L1表达检测临床病理专家共识. 中华肿瘤杂志, 2020, 42(7): 513-521. |
73. | Ma H, Zhang Q, Zhao Y, et al. Molecular and clinicopathological characteristics of lung cancer concomitant chronic obstructive pulmonary disease (COPD). Int J Chron Obstruct Pulmon Dis, 2022, 17: 1601-1612. |
74. | Lin M, Huang ZY, Chen YF, et al. Lung cancer patients with chronic obstructive pulmonary disease benefit from anti-PD-1/PD-L1 therapy. Front Immunol, 2022, 13: 1038715. |
75. | Gatto L, Franceschi E, Nunno VD, et al. Potential protective and therapeutic role of immune checkpoint inhibitors against viral infections and COVID-19. Immunotherapy, 2020, 12(15): 1111-1114. |
76. | Pezeshki PS, Rezaei N. Immune checkpoint inhibition in COVID-19: risks and benefits. Expert Opin Biol Ther, 2021, 21(9): 1173-1179. |
- 1. Viegi G, Maio S, Fasola S, et al. Global burden of chronic respiratory diseases. J Aerosol Med Pulm Drug Deliv, 2020, 33(4): 171-177.
- 2. Aghapour M, Raee P, Moghaddam SJ, et al. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am J Respir Cell Mol Biol, 2018, 58(2): 157-169.
- 3. Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo J, 1992, 11(11): 3887-3895.
- 4. Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity, 2004, 20(3): 337-347.
- 5. Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol, 1996, 8(5): 765-772.
- 6. Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol, 2002, 169(10): 5538-5545.
- 7. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med, 2016, 375(18): 1767-1778.
- 8. Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol, 2004, 173(2): 945-954.
- 9. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med, 2000, 192(7): 1027-1034.
- 10. Dong HD, Zhu GF, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med, 1999, 5(12): 1365-1369.
- 11. Lin DY, Tanaka Y, Iwasaki M, et al. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci U S A, 2008, 105(8): 3011-3016.
- 12. Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008, 26: 677-704.
- 13. Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity, 2018, 48(3): 434-452.
- 14. Krogsgaard M, Huppa JB, Purbhoo MA, et al. Linking molecular and cellular events in T-cell activation and synapse formation. Semin Immunol, 2003, 15(6): 307-315.
- 15. Lee GR. The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci, 2018, 19(3).
- 16. Esensten JH, Helou YA, Chopra G, et al. CD28 Costimulation: From Mechanism to Therapy. Immunity, 2016, 44(5): 973-988.
- 17. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med, 2012, 209(6): 1201-1217.
- 18. Wang Q, Bardhan K, Boussiotis VA, et al. The PD-1 Interactome. Adv Biol (Weinh), 2021, 5(9): e2100758.
- 19. Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett, 2004, 574(1-3): 37-41.
- 20. Carter L, Fouser LA, Jussif J, et al. PD-1: PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol, 2002, 32(3): 634-643.
- 21. Wei F, Zhong S, Ma Z, et al. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A, 2013, 110(27): E2480-2489.
- 22. Cosio MG, Majo J, Cosio MG. Inflammation of the airways and lung parenchyma in COPD: role of T cells. Chest, 2002, 121(5 Suppl): 160s-165s.
- 23. Williams M, Todd I, Fairclough LC. The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflamm Res, 2021, 70(1): 11-18.
- 24. Zhuang H, Li N, Chen SD, et al. Correlation between level of autophagy and frequency of CD8+ T cells in patients with chronic obstructive pulmonary disease. J Int Med Res, 2020, 48(9): 300060520952638.
- 25. Motz GT, Eppert BL, Sun GY, et al. Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema. J Immunol, 2008, 181(11): 8036-8043.
- 26. Saetta M, Di Stefano A, Turato G, et al. CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 1998, 157(3 Pt 1): 822-826.
- 27. Roos-Engstrand E, Ekstrand-Hammarström B, Pourazar J, et al. Influence of smoking cessation on airway T lymphocyte subsets in COPD. COPD, 2009, 6(2): 112-120.
- 28. Zhu J, Mallia P, Footitt J, et al. Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD. J Allergy Clin Immunol, 2020, 146(4): 840-850. e847.
- 29. Kojima H, Shinohara N, Hanaoka S, et al. Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity, 1994, 1(5): 357-364.
- 30. Maeno T, Houghton AM, Quintero PA, et al. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol, 2007, 178(12): 8090-8096.
- 31. Paats MS, Bergen IM, Hoogsteden HC, et al. Systemic CD4+ and CD8+ T-cell cytokine profiles correlate with GOLD stage in stable COPD. Eur Respir J, 2012, 40(2): 330-337.
- 32. Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J, 2001, 17(5): 946-953.
- 33. O'Shaughnessy TC, Ansari TW, Barnes NC, et al. Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med, 1997, 155(3): 852-857.
- 34. Majori M, Corradi M, Caminati A, et al. Predominant TH1 cytokine pattern in peripheral blood from subjects with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 1999, 103(3 Pt 1): 458-462.
- 35. Sun J, Liu T, Yan Y, et al. The role of Th1/Th2 cytokines played in regulation of specific CD4 (+) Th1 cell conversion and activation during inflammatory reaction of chronic obstructive pulmonary disease. Scand J Immunol, 2018, 88(1): e12674.
- 36. Uzeloto JS, de Toledo-Arruda AC, Silva BSA, et al. Systemic cytokine profiles of CD4+ T lymphocytes correlate with clinical features and functional status in stable COPD. Int J Chron Obstruct Pulmon Dis, 2020, 15: 2931-2940.
- 37. Lee SH, Goswami S, Grudo A, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med, 2007, 13(5): 567-569.
- 38. Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol, 2018, 73: 34-51.
- 39. Lourenço JD, Ito JT, Martins MA, et al. Th17/Treg imbalance in chronic obstructive pulmonary disease: clinical and experimental evidence. Front Immunol, 2021, 12: 804919.
- 40. Wang HY, Ying HJ, Wang S, et al. Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J, 2015, 9(3): 330-341.
- 41. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med, 2008, 359(22): 2355-2365.
- 42. Fujimoto K, Yasuo M, Urushibata K, et al. Airway inflammation during stable and acutely exacerbated chronic obstructive pulmonary disease. Eur Respir J, 2005, 25(4): 640-646.
- 43. Mercer PF, Shute JK, Bhowmik A, et al. MMP-9, TIMP-1 and inflammatory cells in sputum from COPD patients during exacerbation. Respir Res, 2005, 6(1): 151.
- 44. Xue WL, Ma JY, Li Y, et al. Role of CD4+ T and CD8+ T lymphocytes-mediated cellular immunity in pathogenesis of chronic obstructive pulmonary disease. J Immunol Res, 2022, 2022: 1429213.
- 45. Stoll P, Ulrich M, Bratke K, et al. Imbalance of dendritic cell co-stimulation in COPD. Respir Res, 2015, 16(1): 19.
- 46. Rui C, Defu L, Lingling W, et al. Cigarette smoke or motor vehicle exhaust exposure induces PD-L1 upregulation in lung epithelial cells in COPD model rats. COPD, 2022, 19(1): 206-215.
- 47. Kalathil SG, Lugade AA, Pradhan V, et al. T-regulatory cells and programmed death 1+ T cells contribute to effector T-cell dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2014, 190(1): 40-50.
- 48. McKendry RT, Spalluto CM, Burke H, et al. Dysregulation of antiviral function of CD8(+) T cells in the chronic obstructive pulmonary disease lung. Role of the PD-1-PD-L1 axis. Am J Respir Crit Care Med, 2016, 193(6): 642-651.
- 49. Tan DBA, Teo TH, Setiawan AM, et al. Impaired Th1 responses in patients with acute exacerbations of COPD are improved with PD-1 blockade. Clin Immunol, 2018, 188: 64-66.
- 50. Huang J, Yi H, Zhao C, et al. Glucagon-like peptide-1 receptor (GLP-1R) signaling ameliorates dysfunctional immunity in COPD patients. Int J Chron Obstruct Pulmon Dis, 2018, 13: 3191-3202.
- 51. Ritzmann F, Borchardt K, Vella G, et al. Blockade of PD-1 decreases neutrophilic inflammation and lung damage in experimental COPD. Am J Physiol Lung Cell Mol Physiol, 2021, 320(5): L958-l968.
- 52. Li L, Yan J, Ma LQ, et al. Effects of Maxingloushi decoction on immune inflammation and programmed death markers in mice with chronic obstructive pulmonary disease. World J Emerg Med, 2022, 13(1): 32-37.
- 53. Wherry EJ. T cell exhaustion. Nat Immunol, 2011, 12(6): 492-499.
- 54. Tang ZS, Hao YH, Zhang EJ, et al. CD28 family of receptors on T cells in chronic HBV infection: expression characteristics, clinical significance and correlations with PD-1 blockade. Mol Med Rep, 2016, 14(2): 1107-1116.
- 55. Tóth I, Le AQ, Hartjen P, et al. Decreased frequency of CD73+CD8+ T cells of HIV-infected patients correlates with immune activation and T cell exhaustion. J Leukoc Biol, 2013, 94(4): 551-561.
- 56. Dolina JS, Van Braeckel-Budimir N, Thomas GD, et al. CD8(+) T cell exhaustion in cancer. Front Immunol, 2021, 12: 715234.
- 57. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439(7077): 682-687.
- 58. Fernandes JR, Pinto TNC, Arruda LB, et al. Age-associated phenotypic imbalance in TCD4 and TCD8 cell subsets: comparison between healthy aged, smokers, COPD patients and young adults. Immun Ageing, 2022, 19(1): 9.
- 59. Song DL, Yan FR, Fu HR, et al. A cellular census of human peripheral immune cells identifies novel cell states in lung diseases. Clin Transl Med, 2021, 11(11): e579.
- 60. Erickson JJ, Rogers MC, Hastings AK, et al. Programmed death-1 impairs secondary effector lung CD8+ T cells during respiratory virus reinfection. J Immunol, 2014, 193(10): 5108-5117.
- 61. Erickson JJ, Gilchuk P, Hastings AK, et al. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J Clin Invest, 2012, 122(8): 2967-2982.
- 62. Gaber T, Strehl C, Buttgereit F. Metabolic regulation of inflammation. Nat Rev Rheumatol, 2017, 13(5): 267-279.
- 63. Agarwal AR, Kadam S, Brahme A, et al. Systemic Immuno-metabolic alterations in chronic obstructive pulmonary disease (COPD). Respir Res, 2019, 20(1): 171.
- 64. O'Beirne SL, Kikkers SA, Oromendia C, et al. Alveolar macrophage immunometabolism and lung function impairment in smoking and chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2020, 201(6): 735-739.
- 65. Sadiku P, Willson JA, Ryan EM, et al. Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis. Cell Metab, 2021, 33(2): 411-423.
- 66. Agarwal AR, Zhao L, Sancheti H, et al. Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs. Am J Physiol Lung Cell Mol Physiol, 2012, 303(10): L889-L898.
- 67. Agarwal AR, Yin F, Cadenas E. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am J Respir Cell Mol Biol, 2014, 51(2): 284-293.
- 68. Fujii W, Kapellos TS, Baßler K, et al. Alveolar macrophage transcriptomic profiling in COPD shows major lipid metabolism changes. ERJ Open Res, 2021, 7(3).
- 69. Boussiotis VA, Patsoukis N. Effects of PD-1 signaling on immunometabolic reprogramming. Immunometabolism, 2022, 4(2): e220007.
- 70. Chowdhury PS, Chamoto K, Kumar A, et al. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8(+) T cells and facilitates anti-PD-1 therapy. Cancer Immunol Res, 2018, 6(11): 1375-1387.
- 71. Song DL, Liu FM, Zhu BJ, et al. Global immunometabolic profiling of AECOPD. Small Methods, 2020, 4(12): 2000483.
- 72. 中国抗癌协会肿瘤病理专业委员会, 中国临床肿瘤学会肿瘤病理专家委员会, 中国临床肿瘤学会非小细胞肺癌专家委员会. 中国非小细胞肺癌PD-L1表达检测临床病理专家共识. 中华肿瘤杂志, 2020, 42(7): 513-521.
- 73. Ma H, Zhang Q, Zhao Y, et al. Molecular and clinicopathological characteristics of lung cancer concomitant chronic obstructive pulmonary disease (COPD). Int J Chron Obstruct Pulmon Dis, 2022, 17: 1601-1612.
- 74. Lin M, Huang ZY, Chen YF, et al. Lung cancer patients with chronic obstructive pulmonary disease benefit from anti-PD-1/PD-L1 therapy. Front Immunol, 2022, 13: 1038715.
- 75. Gatto L, Franceschi E, Nunno VD, et al. Potential protective and therapeutic role of immune checkpoint inhibitors against viral infections and COVID-19. Immunotherapy, 2020, 12(15): 1111-1114.
- 76. Pezeshki PS, Rezaei N. Immune checkpoint inhibition in COVID-19: risks and benefits. Expert Opin Biol Ther, 2021, 21(9): 1173-1179.