1. |
Rowan SC, Keane MP, Gaine S, et al. Hypoxic pulmonary hypertension in chronic lung diseases: novel vasoconstrictor pathways. Lancet Respir Med, 2016, 4(3): 225-236.
|
2. |
夏秀琼, 程德云, 苏巧俐, 等. 斯伐他汀抑制血管紧张素-Ⅱ受体1的表达, 预防大鼠低氧性肺动脉高压. 中国呼吸与危重监护杂志, 2007, (3): 213-216,42.
|
3. |
钟小宁, 姚龙. 肺血管重建在低氧性肺动脉高压中的作用及其机制. 中国呼吸与危重监护杂志, 2003, 2(4): 246-248.
|
4. |
Wijeratne DT, Lajkosz K, Brogly SB, et al. Increasing incidence and prevalence of World Health Organization groups 1 to 4 pulmonary hypertension: a population-based cohort study in Ontario, Canada. Circ Cardiovasc Qual Outcomes, 2018, 11(2): e003973.
|
5. |
Thenappan T, Ormiston ML, Ryan JJ, et al. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ, 2018, 360: j5492.
|
6. |
Ding LF, Jiang MX, Wang RY, et al. The emerging role of small non-coding RNA in renal cell carcinoma. Transl Oncol, 2021, 14(1): 100974.
|
7. |
Carregal-Romero S, Fadón L, Berra E, et al. MicroRNA nanotherapeutics for lung targeting. Insights into pulmonary hypertension. Int J Mol Sci, 2020, 21(9): 3253.
|
8. |
Miao R, Dong XB, Gong JN, et al. Possible immune regulation mechanisms for the progression of chronic thromboembolic pulmonary hypertension. Thromb Res, 2021, 198: 122-131.
|
9. |
Yuan YC, Xu L, Geng ZH, et al. The role of non-coding RNA network in atherosclerosis. Life Sci, 2021, 265: 118756.
|
10. |
Bunch H. Gene regulation of mammalian long non-coding RNA. Mol Genet Genomic, 2018, 293(1): 1-15.
|
11. |
Atianand MK, Caffrey DR, Fitzgerald KA. Immunobiology of long noncoding RNAs. Annu Rev Immunol, 2017, 35: 177-198.
|
12. |
Sun WL, Yang YB, Xu CJ, et al. Regulatory mechanisms of long noncoding RNAs on gene expression in cancers. Cancer Genet, 2017, 216-217: 105-110.
|
13. |
Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature, 1979, 280(5720): 339-340.
|
14. |
Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci U S A, 1996, 93(13): 6536-6541.
|
15. |
Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules. FASEB J, 1993, 7(1): 155-160.
|
16. |
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell, 2017, 66(1): 9-21.
|
17. |
Guo HL, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308): 835-840.
|
18. |
McDermott AM, Heneghan HM, Miller N, et al. The therapeutic potential of microRNAs: disease modulators and drug targets. Pharm Res, 2011, 28(12): 3016-3029.
|
19. |
Khraiwesh B, Arif MA, Seumel GI, et al. Transcriptional control of gene expression by microRNAs. Cell, 2010, 140(1): 111-122.
|
20. |
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell, 2011, 146(3): 353-358.
|
21. |
Zhang JT, Li YY, Qi J, et al. Circ-calm4 serves as an miR-337-3p sponge to regulate Myo10 (Myosin 10) and promote pulmonary artery smooth muscle proliferation. Hypertension, 2020, 75(3): 668-679.
|
22. |
Han Y, Liu YH, Yang CK, et al. LncRNA CASC2 inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation and migration by regulating the miR-222/ING5 axis. Cell Mol Biol Lett, 2020, 25: 21.
|
23. |
Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol, 2004, 43(12 Suppl S): 13S-24S.
|
24. |
Humbert M, Montani D, Perros F, et al. Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vascul Pharmacol, 2008, 49(4-6): 113-118.
|
25. |
Deng L, Blanco FJ, Stevens H, et al. MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res, 2015, 117(10): 870-883.
|
26. |
Josipovic I, Fork C, Preussner J, et al. PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells. Acta Physiol (Oxf), 2016, 218(1): 13-27.
|
27. |
Gu S, Li GH, Zhang XT, et al. Aberrant expression of long noncoding RNAs in chronic thromboembolic pulmonary hypertension. Mol Med Rep, 2015, 11(4): 2631-2643.
|
28. |
Tan H, Yao H, Lie ZB, et al. MicroRNA-30a-5p promotes proliferation and inhibits apoptosis of human pulmonary artery endothelial cells under hypoxia by targeting YKL-40. Mol Med Rep, 2019, 20(1): 236-244.
|
29. |
Huber LC, Ulrich S, Leuenberger C, et al. Featured article: microRNA-125a in pulmonary hypertension: regulator of a proliferative phenotype of endothelial cells. Exp Biol Med (Maywood), 2015, 240(12): 1580-1589.
|
30. |
Xiong JH, Kawagishi H, Yan Y, et al. A metabolic basis for endothelial-to-mesenchymal transition. Mol Cell, 2018, 69(4): 689-698.
|
31. |
Monteiro JP, Rodor J, Caudrillier A, et al. MIR503HG loss promotes endothelial-to-mesenchymal transition in vascular disease. Circ Res, 2021, 128(8): 1173-1190.
|
32. |
Fujita Y, Yoshioka Y, Ochiya T. Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci, 2016, 107(4): 385-390.
|
33. |
Fujimoto S, Fujita Y, Kadota T, et al. Intercellular communication by vascular endothelial cell-derived extracellular vesicles and their microRNAs in respiratory diseases. Front Mol Biosci, 2020, 7: 619697.
|
34. |
de la Cuesta F, Passalacqua I, Rodor J, et al. Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Commun Signal, 2019, 17(1): 143.
|
35. |
Khandagale A, Åberg M, Wikström G, et al. Role of extracellular vesicles in pulmonary arterial hypertension: modulation of pulmonary endothelial function and angiogenesis. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2293-2309.
|
36. |
Gu JZ, Zhang HY, Ji BY, et al. Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells. Sci Rep, 2017, 7: 43546.
|
37. |
Huetsch JC, Suresh K, Shimoda LA. Regulation of smooth muscle cell proliferation by NADPH oxidases in pulmonary hypertension. Antioxidants (Basel), 2019, 8(3): 56.
|
38. |
Sun Z, Liu Y, Yu F, et al. Long non-coding RNA and mRNA profile analysis of metformin to reverse the pulmonary hypertension vascular remodeling induced by monocrotaline. Biomed Pharmacother, 2019, 115: 108933.
|
39. |
Gong JS, Chen ZJ, Chen Y, et al. Long non-coding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension. Respir Res, 2019, 20(1): 53.
|
40. |
Hao XW, Li H, Zhang P, et al. Down-regulation of lncRNA Gas5 promotes hypoxia-induced pulmonary arterial smooth muscle cell proliferation by regulating KCNK3 expression. Eur J Pharmacol, 2020, 889: 173618.
|
41. |
Xing Y, Zheng XD, Fu Y, et al. Long noncoding RNA-maternally expressed gene 3 contributes to hypoxic pulmonary hypertension. Mol Ther, 2019, 27(12): 2166-2181.
|
42. |
Zhu BQ, Gong YY, Yan GL, et al. Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21. Biochem Biophys Res Commun, 2018, 495(3): 2125-2132.
|
43. |
Yang L, Liang H, Shen L, et al. LncRNA Tug1 involves in the pulmonary vascular remodeling in mice with hypoxic pulmonary hypertension via the microRNA-374c-mediated Foxc1. Life Sci, 2019, 237: 116769.
|
44. |
Qin YH, Zhu BQ, Li LQ, et al. Overexpressed lncRNA AC068039.4 contributes to proliferation and cell cycle progression of pulmonary artery smooth muscle cells via sponging miR-26a-5p/TRPC6 in hypoxic pulmonary arterial hypertension. Shock, 2021, 55(2): 244-255.
|
45. |
Zhu TT, Sun RL, Yin YL, et al. Long noncoding RNA UCA1 promotes the proliferation of hypoxic human pulmonary artery smooth muscle cells. Pflugers Arch, 2019, 471(2): 347-355.
|
46. |
Zhang HY, Liu Y, Yan LX, et al. Long noncoding RNA Hoxaas3 contributes to hypoxia-induced pulmonary artery smooth muscle cell proliferation. Cardiovasc Res, 2019, 115(3): 647-657.
|
47. |
Xu SL, Deng YS, Liu J, et al. Regulation of circular RNAs act as ceRNA in a hypoxic pulmonary hypertension rat model. Genomics, 2021, 113(1 Pt 1): 11-19.
|
48. |
Ma C, Gu R, Wang XY, et al. circRNA CDR1as promotes pulmonary artery smooth muscle cell calcification by upregulating CAMK2D and CNN3 via sponging miR-7-5p. Mol Ther Nucleic Acids, 2020, 22: 530-541.
|
49. |
Jin X, Xu YY, Guo M, et al. hsa_circNFXL1_009 modulates apoptosis, proliferation, migration, and potassium channel activation in pulmonary hypertension. Mol Ther Nucleic Acids, 2021, 23: 1007-1019.
|
50. |
Zhang Y, Chen YB, Yao H, et al. Elevated serum circ_0068481 levels as a potential diagnostic and prognostic indicator in idiopathic pulmonary arterial hypertension. Pulm Circ, 2019, 9(4): 2045894019888416.
|
51. |
Bonnet S, Boucherat O, Provencher S, et al. Early evidence for the role of lncRNA TUG1 in vascular remodelling in pulmonary hypertension. Can J Cardiol, 2019, 35(11): 1433-1434.
|