1. |
Venkatesan P. GOLD COPD report: 2023 update. Lancet Respir Med, 2023, 11(1): 18.
|
2. |
Meghji J, Mortimer K, Agusti A, et al. Improving lung health in low-income and middle-income countries: from challenges to solutions. Lancet, 2021, 397(10277): 928-940.
|
3. |
Zhou MG, Wang HD, Zeng XY, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2019, 394(10204): 1145-1158.
|
4. |
Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One, 2010, 5(1): e8578.
|
5. |
Wang Z, Singh R, Miller BE, et al. Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study. Thorax, 2018, 73(4): 331-338.
|
6. |
Tsay JJ, Segal LN. Could the sputum microbiota be a biomarker that predicts mortality after acute exacerbations of chronic obstructive pulmonary disease?. Am J Respir Crit Care Med, 2019, 199(10): 1175-1176.
|
7. |
Millares L, Pascual S, Montón C, et al. Relationship between the respiratory microbiome and the severity of airflow limitation, history of exacerbations and circulating eosinophils in COPD patients. BMC Pulm Med, 2019, 19(1): 112.
|
8. |
Leitao Filho FS, Alotaibi NM, Ngan D, et al. Sputum microbiome is associated with 1-year mortality after chronic obstructive pulmonary disease hospitalizations. Am J Respir Crit Care Med, 2019, 199(10): 1205-1213.
|
9. |
Wang Z, Bafadhel M, Haldar K, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J, 2016, 47(4): 1082-1092.
|
10. |
Wang Z, Locantore N, Haldar K, et al. Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis. Am J Respir Crit Care Med, 2021, 203(12): 1488-1502.
|
11. |
Liu HY, Zheng DW, Lin YX, et al. Association of sputum microbiome with clinical outcome of initial antibiotic treatment in hospitalized patients with acute exacerbations of COPD. Pharmacol Res, 2020, 160: 105095.
|
12. |
Wang Z, Maschera B, Lea S, et al. Airway host-microbiome interactions in chronic obstructive pulmonary disease. Respir Res, 2019, 20(1): 113.
|
13. |
谷亮, 吴波. 高通量测序下吸入性糖皮质激素对老年慢阻肺患者痰液微生物组学的影响研究. 贵州医药, 2021, 45(5): 745-746.
|
14. |
Yang CY, Li SW, Chin CY, et al. Association of exacerbation phenotype with the sputum microbiome in chronic obstructive pulmonary disease patients during the clinically stable state. J Transl Med, 2021, 19(1): 121.
|
15. |
Wang J, Chai JM, Sun LN, et al. The sputum microbiome associated with different sub-types of AECOPD in a Chinese cohort. BMC Infect Dis, 2020, 20(1): 610.
|
16. |
Tangedal S, Nielsen R, Aanerud M, et al. Sputum microbiota and inflammation at stable state and during exacerbations in a cohort of chronic obstructive pulmonary disease (COPD) patients. PLoS One, 2019, 14(9): e0222449.
|
17. |
Huang YJ, Sethi S, Murphy T, et al. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol, 2014, 52(8): 2813-2823.
|
18. |
Mayhew D, Devos N, Lambert C, et al. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax, 2018, 73(5): 422-430.
|
19. |
Einarsson GG, Comer DM, McIlreavey L, et al. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax, 2016, 71(9): 795-803.
|
20. |
齐玉晶, 王哲, 孙雪皎, 等. 基于16S rRNA基因高通量测序分析慢性阻塞性肺疾病急性加重患者的诱导痰微生态多样性. 中国呼吸与危重监护杂志, 2020, 19(4): 359-365.
|
21. |
Dicker AJ, Huang JTJ, Lonergan M, et al. The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2021, 147(1): 158-167.
|
22. |
Sun Z, Zhu QL, Shen Y, et al. Dynamic changes of gut and lung microorganisms during chronic obstructive pulmonary disease exacerbations. Kaohsiung J Med Sci, 2020, 36(2): 107-113.
|
23. |
Chotirmall SH, Gellatly SL, Budden KF, et al. Microbiomes in respiratory health and disease: An Asia-Pacific perspective. Respirology, 2017, 22(2): 240-250.
|
24. |
Dickson RP, Erb-Downward JR, Freeman CM, et al. Bacterial topography of the healthy human lower respiratory tract. mBio, 2017, 8(1): e02287-16.
|
25. |
李玉姣, 程小刚, 钱飞, 等. 健康成人口腔微生物组成及功能的宏基因组学研究. 口腔疾病防治, 2022, 30(8): 533-541.
|
26. |
康吉哲, WANG Wei, 叶俊杰, 等. 吸烟与非吸烟者口腔微生物多样性形成机制对比分析. 口腔医学研究, 2022, 38(10): 986-990.
|
27. |
Liu HY, Zhang SY, Yang WY, et al. Oropharyngeal and sputum microbiomes are similar following exacerbation of chronic obstructive pulmonary disease. Front Microbiol, 2017, 8: 1163.
|
28. |
盛美玲, 汪群智. 慢性阻塞性肺疾病急性加重风险高危与低危患者呼吸道微生态系统差异分析. 临床肺科杂志, 2020, 25(12): 1787-1790.
|
29. |
Diao WQ, Shen N, Du YP, et al. Symptom-related sputum microbiota in stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2018, 13: 2289-2299.
|
30. |
Leung JM, Tiew PY, Mac Aogáin M, et al. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology, 2017, 22(4): 634-650.
|
31. |
Yadava K, Pattaroni C, Sichelstiel AK, et al. Microbiota promotes chronic pulmonary inflammation by enhancing IL-17A and autoantibodies. Am J Respir Crit Care Med, 2016, 193(9): 975-987.
|
32. |
Rigauts C, Aizawa J, Taylor SL, et al. Rothia mucilaginosa is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease. Eur Respir J, 2022, 59(5): 2101293.
|
33. |
娄红超, 谢汉华, 卢乃棉. 泛福舒对老年COPD患者的肺功能和细胞免疫力的分析. 中华肺部疾病杂志(电子版), 2021, 14(3): 315-317.
|
34. |
钱东林, 高翔, 李翔翔, 等. 泛福舒胶囊治疗支气管哮喘患儿的临床研究. 中国临床药理学杂志, 2020, 36(21): 3407-3409, 3417.
|