1. |
Solerte SB, Di Sabatino A, Galli M, et al. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol, 2020, 57(7): 779-783.
|
2. |
Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis, 2020, 222(4): 556-563.
|
3. |
Smith JC, Sausville EL, Girish V, et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev cell, 2020, 53(5): 514-529.
|
4. |
Jacobs M, Van Eeckhoutte HP, Wijnant SRA, et al. Increased expression of ACE2, the SARS-CoV-2 entry receptor, in alveolar and bronchial epithelium of smokers and COPD subjects. Eur Respir J, 2020, 56(2): 2002378.
|
5. |
Vankadari N, Wilce JA. Emerging COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect, 2020, 9(1): 601-604.
|
6. |
Li Y, Zhang ZD, Yang L, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience, 2020, 23(8): 101400.
|
7. |
Du HZ, Wang DW, Chen C. The potential effects of DPP-4 inhibitors on cardiovascular system in COVID-19. J Cell Mol Med, 2020, 24(18): 10274-10278.
|
8. |
Maremanda KP, Sundar IK, Li DM, et al. Age-dependent assessment of genes involved in cellular senescence, telomere, and mitochondrial pathways in human lung tissue of smokers, COPD, and IPF: associations with SARS-CoV-2 COVID-19 ACE2-TMPRSS2-Furin-DPP4 Axis. Front Pharmacol, 2020, 11: 584637.
|
9. |
Seys LJM, Widagdo W, Verhamme FM, et al. DPP4, the Middle East Respiratory Syndrome Coronavirus receptor, is upregulated in lungs of smokers and chronic obstructive pulmonary disease patients. Clin Infect Dis, 2018, 66(1): 45-53.
|
10. |
国家卫生健康委员会办公厅, 国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第九版). 中国病毒病杂志, 2022, 12(3): 161-169.
|
11. |
中华医学会呼吸病学分会慢性阻塞性肺疾病学组, 中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会. 慢性阻塞性肺疾病诊治指南(2021年修订版). 中华结核和呼吸杂志, 2021, 44(3): 170-205.
|
12. |
Crouser ED, Maier LA, Wilson KC, et al. Diagnosis and Detection of Sarcoidosis. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med, 2020, 201(8): e26-e51.
|
13. |
Chua RL, Lukassen S, Trump S, et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat Biotechnol, 2020, 38(8): 970-979.
|
14. |
Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell, 2020, 182(2): 429-446.
|
15. |
Bao LL, Deng W, Huang BY, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 2020, 583(7818): 830-833.
|
16. |
Zhang HJ, Rostami MR, Leopold PL, et al. Expression of the SARS-CoV-2 ACE2 receptor in the human airway epithelium. Am J Respir Crit Care Med, 2020, 202(2): 219-229.
|
17. |
Murdocca M, Citro G, Romeo I, et al. Peptide platform as a powerful tool in the fight against COVID-19. Viruses, 2021, 13(8): 1667.
|
18. |
Kleine-Weber H, Schroeder S, Krüger N, et al. Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerg Microbe Infect, 2020, 9(1): 155-168.
|
19. |
Gheware A, Ray A, Rana D, et al. ACE2 protein expression in lung tissues of severe COVID-19 infection. Sci Rep, 2022, 12(1): 4058.
|
20. |
South AM, Tomlinson L, Edmonston D, et al. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephorl, 2020, 16(6): 305-307.
|
21. |
Nikiforuk AM, Kuchinski KS, Twa DW, et al. The contrasting role of nasopharyngeal angiotensin converting enzyme 2 ( ACE2) transcription in SARS-CoV-2 infection: a cross-sectional study of people tested for COVID-19 in British Columbia, Canada. EBioMedicine, 2021, 66: 103316.
|
22. |
Watson A, Öberg L, Angermann B, et al. Dysregulation of COVID-19 related gene expression in the COPD lung. Respir Res, 2021, 22(1): 164.
|
23. |
Fließer E, Birnhuber A, Marsh LM, et al. Dysbalance of ACE2 levels - a possible cause for severe COVID-19 outcome in COPD. J Pathol Clin Res, 2021, 7(5): 446-458.
|
24. |
Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: a rapid systematic review and meta-analysis. PloS One, 2020, 15(5): e233147.
|
25. |
Seys LJM, Widagdo W, Verhamme FM, et al. DPP4, the Middle East Respiratory Syndrome Coronavirus receptor, is upregulated in lungs of smokers and chronic obstructive pulmonary disease patients. Clin Infect Dis, 2018, 66(1): 45-53.
|
26. |
Liu AB, Zhang X, Li RG, et al. Overexpression of the SARS-CoV-2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia. J Pathol, 2021, 253(1): 17-30.
|
27. |
Cai GS, Bossé Y, Xiao FF, et al. Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med, 2020, 201(12): 1557-1559.
|
28. |
Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy, 2020, 75(11): 2829-2845.
|
29. |
Amati F, Vancheri C, Latini A, et al. Expression profiles of the SARS-CoV-2 host invasion genes in nasopharyngeal and oropharyngeal swabs of COVID-19 patients. Heliyon, 2020, 6(10): e05143.
|
30. |
Qi FR, Qian S, Zhang SY, et al. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun, 2020, 526(1): 135-140.
|
31. |
Spitalieri P, Centofanti F, Murdocca M, et al. Two different therapeutic approaches for SARS-CoV-2 in hiPSCs-derived lung organoids. Cells, 2022, 11(7) : 1235.
|
32. |
Cameron K, Rozano L, Falasca M, et al. Does the SARS-CoV-2 spike protein receptor binding domain interact effectively with the DPP4 (CD26) receptor? A molecular docking study. Int J Mol Sci, 2021, 22(13): 7001.
|