1. |
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 2016, 315(8): 801-810.
|
2. |
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet, 2021, 398(10300): 622-637.
|
3. |
Basodan N, Al Mehmadi AE, Al Mehmadi AE, et al. Septic shock: management and outcomes. Cureus, 2022, 14(12): e32158.
|
4. |
Gong HK, Chen Y, Chen ML, et al. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome. Front Med (Lausanne), 2022, 9: 1043859.
|
5. |
Maruna P, Nedelníková K, Gürlich R. Physiology and genetics of procalcitonin. Physiol Res, 2000, 49 Suppl 1: S57-S61.
|
6. |
Plata-Menchaca EP, Ferrer R. Procalcitonin is useful for antibiotic deescalation in sepsis. Crit Care Med, 2021, 49(4): 693-696.
|
7. |
Rezaeinasab M, Rad M. Analytical survey of human rabies and animal bite prevalence during one decade in the province of Kerman, Iran. Crit Care, 2008, 12(Suppl 2): P1.
|
8. |
Tsantes A, Tsangaris I, Kopterides P, et al. The role of procalcitonin and IL-6 in discriminating between septic and non-septic causes of ALI/ARDS: a prospective observational study. Clin Chem Lab Med, 2013, 51(7): 1535-1542.
|
9. |
Akwii RG, Sajib MS, Zahra FT, et al. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells, 2019, 8(5): 471.
|
10. |
Parikh SM. The angiopoietin-Tie2 signaling axis in systemic inflammation. J Am Soc Nephrol, 2017, 28(7): 1973-1982.
|
11. |
Saharinen P, Leppänen VM, Alitalo K. SnapShot: angiopoietins and their functions. Cell, 2017 171(3): 724. e1.
|
12. |
Bhandari V, Choo-Wing R, Lee CG, et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med, 2006, 12(11): 1286-1293.
|
13. |
Tsangaris I, Tsantes A, Vrigkou E, et al. Angiopoietin-2 levels as predictors of outcome in mechanically ventilated patients with acute respiratory distress syndrome. Dis Markers, 2017, 2017: 6758721.
|
14. |
Gutbier B, Neuhauss AK, Reppe K, et al. Prognostic and pathogenic role of angiopoietin-1 and -2 in pneumonia. Am J Respir Crit Care Med, 2018, 198(2): 220-231.
|
15. |
Reilly JP, Wang F, Jones TK, et al. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med, 2018, 44(11): 1849-1858.
|
16. |
Rajput C, Tauseef M, Farazuddin M, et al. MicroRNA-150 suppression of angiopoetin-2 generation and signaling is crucial for resolving vascular injury. Arterioscler Thromb Vasc Biol, 2016, 36(2): 380-388.
|
17. |
Han S, Lee SJ, Kim KE, et al. Amelioration of sepsis by TIE2 activation-induced vascular protection. Sci Transl Med, 2016, 8(335): 335ra55.
|
18. |
Mostafa S, Pakvasa M, Coalson E, et al. The wonders of BMP9: from mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis, 2019, 6(3): 201-223.
|
19. |
Liu W, Deng ZL, Zeng ZY, et al. Highly expressed BMP9/GDF2 in postnatal mouse liver and lungs may account for its pleiotropic effects on stem cell differentiation, angiogenesis, tumor growth and metabolism. Genes Dis, 2020, 7(2): 235-244.
|
20. |
Song TZ, Huang DM, Song DZ. The potential regulatory role of BMP9 in inflammatory responses. Genes Dis, 2022, 9(6): 1566-1578.
|
21. |
Chen XY, Orriols M, Walther FJ, et al. Bone morphogenetic protein 9 protects against neonatal hyperoxia-induced impairment of alveolarization and pulmonary inflammation. Front Physiol, 2017, 8: 486.
|
22. |
Li W, Long L, Yang XD, et al. Circulating BMP9 protects the pulmonary endothelium during inflammation-induced lung injury in mice. Am J Respir Crit Care Med, 2021, 203(11): 1419-1430.
|
23. |
Flippo KH, Potthoff MJ. Metabolic messengers: FGF21. Nat Metab, 2021, 3(3): 309-317.
|
24. |
Yao D, He QL, Sun JW, et al. FGF21 attenuates hypoxia-induced dysfunction and inflammation in HPAECs via the microRNA-27b-mediated PPARγ pathway. Int J Mol Med, 2021 47(6): 116.
|
25. |
Gao J, Liu QH, Li JL, et al. Fibroblast growth factor 21 dependent TLR4/MYD88/NF-κB signaling activation is involved in lipopolysaccharide-induced acute lung injury. Int Immunopharmacol, 2020, 80: 106219.
|
26. |
Li X, Zhu ZX, Zhou TH, et al. Predictive value of combined serum FGF21 and free T3 for survival in septic patients. Clin Chim Acta, 2019, 494: 31-37.
|
27. |
Li X, Shen H, Zhou TH, et al. Does an increase in serum FGF21 level predict 28-day mortality of critical patients with sepsis and ARDS? Respir Res, 2021, 22(1): 182.
|
28. |
Yan F, Yuan L, Yang F, et al. Emerging roles of fibroblast growth factor 21 in critical disease. Front Cardiovasc Med, 2022, 9: 1053997.
|
29. |
Galliera E, Massaccesi L, de Vecchi E, et al. Clinical application of presepsin as diagnostic biomarker of infection: overview and updates. Clin Chem Lab Med, 2019, 58(1): 11-17.
|
30. |
Park JE, Lee B, Yoon SJ, et al. Complementary use of presepsin with the Sepsis-3 Criteria improved identification of high-risk patients with suspected sepsis. Biomedicines, 2021, 9(9): 1076.
|
31. |
Ali FT, Ali MA, Elnakeeb MM, et al. Presepsin is an early monitoring biomarker for predicting clinical outcome in patients with sepsis. Clin Chim Acta, 2016, 460: 93-101.
|
32. |
Assal HH, Abdelrahman SM, Abdelbasset MA, et al. Presepsin as a novel biomarker in predicting in-hospital mortality in patients with COVID-19 pneumonia. Int J Infect Dis, 2022, 118: 155-163.
|
33. |
El Gendy FM, El-Mekkawy MS, Saleh N , et al. Clinical study of presepsin and pentraxin 3 in critically ill children. J Crit Care, 2018, 47: 36-40.
|
34. |
Zhao JN, Tan Y, Wang L, et al. Discriminatory ability and prognostic evaluation of presepsin for sepsis-related acute respiratory distress syndrome. Sci Rep, 2020, 10(1): 9114.
|
35. |
Yang M, Wei WB. SNHG16: a novel long-non coding RNA in human cancers. Onco Targets Ther, 2019, 12: 11679-11690.
|
36. |
Xia L, Zhu GQ, Huang HY, et al. LncRNA small nucleolar RNA host gene 16 (SNHG16) silencing protects lipopolysaccharide (LPS)-induced cell injury in human lung fibroblasts WI-38 through acting as miR-141-3p sponge. Biosci Biotechnol Biochem, 2021, 85(5): 1077-1087.
|
37. |
Wang WY, Lou CY, Gao J, et al. LncRNA SNHG16 reverses the effects of miR-15a/16 on LPS-induced inflammatory pathway. Biomed Pharmacother, 2018, 106: 1661-1667.
|
38. |
Gao PJ, Wang J, Jiang M, et al. LncRNA SNHG16 is downregulated in pneumonia and downregulates miR-210 to promote LPS-induced lung cell apoptosis. Mol Biotechnol, 2023, 65(3): 446-452.
|
39. |
Zhang CJ, Huang QH, He FY. Correlation of small nucleolar RNA host gene 16 with acute respiratory distress syndrome occurrence and prognosis in sepsis patients. J Clin Lab Anal, 2022, 36(7): e24516.
|
40. |
Miao H, Chen S, Ding RY. Evaluation of the molecular mechanisms of sepsis using proteomics. Front Immunol, 2021, 12: 733537.
|
41. |
Shu T, Ning WS, Wu D, et al. Plasma proteomics identify biomarkers and pathogenesis of COVID-19. Immunity, 2020, 53(5): 1108-1122. e1105.
|
42. |
Wang CL, Li Y, Li SL, et al. Proteomics combined with RNA sequencing to screen biomarkers of sepsis. Infect Drug Resist, 2022, 15: 5575-5587.
|
43. |
Yehya N, Fazelinia H, Taylor DM, et al. Differentiating children with sepsis with and without acute respiratory distress syndrome using proteomics. Am J Physiol Lung Cell Mol Physiol, 2022, 322(3): L365-L372.
|