Citation: 何阳, 王易轩, 胡克. 治疗性间歇低氧–高氧研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2023, 22(11): 815-820. doi: 10.7507/1671-6205.202307023 Copy
1. | Hamlin MJ, Lizamore CA, Hopkins WG. The effect of natural or simulated altitude training on high-intensity intermittent running performance in team-sport athletes: a meta-analysis. Sports Med, 2018, 48(2): 431-446. |
2. | Schega L, Peter B, Brigadski T, et al. Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. J Sci Med Sport, 2016, 19(11): 941-945. |
3. | Mateika JH, El-Chami M, Shaheen D, et al. Intermittent hypoxia: a low-risk research tool with therapeutic value in humans. J Appl Physiol (1985), 2015, 118(5): 520-532. |
4. | Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol, 2014, 307(10): R1181-R1197. |
5. | Shobatake R, Ota H, Takahashi N, et al. The impact of intermittent hypoxia on metabolism and cognition. Int J Mol Sci, 2022, 23(21): 12957. |
6. | 查世乾, 陈豪, 郝玥影, 等. 急性间歇低氧暴露对心肺功能的影响. 中华结核和呼吸杂志, 2023, 46(3): 257-262. |
7. | Panza GS, Puri S, Lin HS, et al. Daily exposure to mild intermittent hypoxia reduces blood pressure in male patients with obstructive sleep apnea and hypertension. Am J Respir Crit Care Med, 2022, 205(8): 949-958. |
8. | Brugniaux JV, Pialoux V, Foster GE, et al. Effects of intermittent hypoxia on erythropoietin, soluble erythropoietin receptor and ventilation in humans. Eur Respir J, 2011, 37(4): 880-887. |
9. | Wang H, Shi XR, Schenck H, et al. Intermittent hypoxia training for treating mild cognitive impairment: a pilot study. Am J Alzheimers Dis Other Demen, 2020, 35: 1533317519896725. |
10. | Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med, 2011, 365(6): 537-547. |
11. | Shohet RV, Garcia JA. Keeping the engine primed: Hif factors as key regulators of cardiac metabolism and angiogenesis during ischemia. J Mol Med (Berl), 2007, 85(12): 1309-1315. |
12. | Wojan F, Stray-Gundersen S, Nagel MJ, et al. Short exposure to intermittent hypoxia increases erythropoietin levels in healthy individuals. J Appl Physiol (1985), 2021, 130(6): 1955-1960. |
13. | Tobin B, Costalat G, Renshaw GMC. Intermittent not continuous hypoxia provoked haematological adaptations in healthy seniors: hypoxic pattern may hold the key. Eur J Appl Physiol, 2020, 120(3): 707-718. |
14. | Serebrovska TV, Portnychenko AG, Drevytska TI, et al. Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Exp Biol Med (Maywood), 2017, 242(15): 1542-1552. |
15. | Lyamina NP, Lyamina SV, Senchiknin VN, et al. Normobaric hypoxia conditioning reduces blood pressure and normalizes nitric oxide synthesis in patients with arterial hypertension. J Hypertens, 2011, 29(11): 2265-2272. |
16. | Millet GP, Debevec T, Brocherie F, et al. Therapeutic use of exercising in hypoxia: Promises and limitations. Front Physiol, 2016, 7: 224. |
17. | Serebrovska TV, Grib ON, Portnichenko VI, et al. Intermittent hypoxia/hyperoxia versus intermittent hypoxia/normoxia: comparative study in prediabetes. High Alt Med Biol, 2019, 20(4): 383-391. |
18. | Brinkmann C, Metten A, Scriba P, et al. Hypoxia and hyperoxia affect serum angiogenic regulators in t2dm men during cycling. Int J Sports Med, 2017, 38(2): 92-98. |
19. | Serebrovskaya TV, Xi L. Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: practical analysis on methods and equipment. Exp Biol Med (Maywood), 2016, 241(15): 1708-1723. |
20. | Treml B, Gatterer H, Burtscher J, et al. A focused review on the maximal exercise responses in hypo- and normobaric hypoxia: divergent oxygen uptake and ventilation responses. Int J Environ Res Public Health, 2020, 17(14): 5239. |
21. | Afina AB, Oleg SG, Alexander AB, et al. The effects of intermittent hypoxic-hyperoxic exposures on lipid profile and inflammation in patients with metabolic syndrome. Front Cardiovasc Med, 2021, 8: 700826. |
22. | Behrendt T, Altorjay AC, Bielitzki R, et al. Influence of acute and chronic intermittent hypoxic-hyperoxic exposure prior to aerobic exercise on cardiovascular risk factors in geriatric patients - a randomized controlled trial. Front Physiol, 2022, 13: 1043536. |
23. | Behrendt T, Bielitzki R, Behrens M, et al. Effects of intermittent hypoxia-hyperoxia exposure prior to aerobic cycling exercise on physical and cognitive performance in geriatric patients - a randomized controlled trial. Front Physiol, 2022, 13: 899096. |
24. | Bestavashvili A, Glazachev O, Bestavashvili A, et al. Intermittent hypoxic-hyperoxic exposures effects in patients with metabolic syndrome: correction of cardiovascular and metabolic profile. Biomedicines, 2022, 10(3): 566. |
25. | Dudnik E, Zagaynaya E, Glazachev OS, et al. Intermittent hypoxia-hyperoxia conditioning improves cardiorespiratory fitness in older comorbid cardiac outpatients without hematological changes: a randomized controlled trial. High Alt Med Biol, 2018, 19(4): 339-343. |
26. | Glazachev O, Kopylov P, Susta D, et al. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: a controlled study. Clin Cardiol, 2017, 40(6): 370-376. |
27. | Glazachev OS, Dudnik EN, Zapara MA, et al. Adaptation to dosed hypoxia-hyperoxia as a factor in improving the quality of life of elderly patients with cardiac pathology. Adv Gerontol, 2019, 32(1-2): 145-151. |
28. | Syrkin AL, Glazachev OS, Kopylov FY, et al. Adaptation to intermittent hypoxia-hyperoxia in the rehabilitation of patients with ischemic heart disease: exercise tolerance and quality of life. Kardiologiia, 2017, 57(5): 10-16. |
29. | Bayer U, Glazachev OS, Likar R, et al. Adaptation to intermittent hypoxia-hyperoxia improves cognitive performance and exercise tolerance in elderly. Adv Gerontol, 2017, 30(2): 255-261. |
30. | Serebrovska ZO, Serebrovska TV, Kholin VA, et al. Intermittent hypoxia-hyperoxia training improves cognitive function and decreases circulating biomarkers of alzheimer's disease in patients with mild cognitive impairment: a pilot study. Int J Mol Sci, 2019, 20(21): 5405. |
31. | Serebrovska ZO, Xi L, Tumanovska LV, et al. Response of circulating inflammatory markers to intermittent hypoxia-hyperoxia training in healthy elderly people and patients with mild cognitive impairment. Life (Basel), 2022, 12(3): 432. |
32. | Burtscher J, Mallet RT, Burtscher M, et al. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev, 2021, 68: 101343. |
33. | Iyalomhe O, Swierczek S, Enwerem N, et al. The role of hypoxia-inducible factor 1 in mild cognitive impairment. Cell Mol Neurobiol, 2017, 37(6): 969-977. |
34. | Zenaro E, Pietronigro E, Della Bianca V, et al. Neutrophils promote alzheimer's disease-like pathology and cognitive decline via lfa-1 integrin. Nat Med, 2015, 21(8): 880-886. |
35. | Swank AM, Horton J, Fleg JL, et al. Modest increase in peak vo2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail, 2012, 5(5): 579-585. |
36. | Serebrovskaya TV, Manukhina EB, Smith ML, et al. Intermittent hypoxia: Cause of or therapy for systemic hypertension? Exp Biol Med (Maywood), 2008, 233(6): 627-650. |
37. | Paniagua OA, Bryant MB, Panza JA. Role of endothelial nitric oxide in shear stress-induced vasodilation of human microvasculature: diminished activity in hypertensive and hypercholesterolemic patients. Circulation, 2001, 103(13): 1752-1758. |
38. | Vedam H, Phillips CL, Wang D, et al. Short-term hypoxia reduces arterial stiffness in healthy men. Eur J Appl Physiol, 2009, 105(1): 19-25. |
39. | Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension, 2020, 75(2): 285-292. |
40. | Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002, 360(9349): 1903-1913. |
41. | Zhang PZ, Downey HF, Chen SD, et al. Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia. Am J Physiol Regul Integr Comp Physiol, 2014, 307(6): R721-R730. |
42. | Debevec T. Hypoxia-related hormonal appetite modulation in humans during rest and exercise: Mini review. Front Physiol, 2017, 8: 366. |
43. | O'Hagan KA, Cocchiglia S, Zhdanov AV, et al. Pgc-1alpha is coupled to hif-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A, 2009, 106(7): 2188-2193. |
44. | Kim SW, Jung WS, Chung S, et al. Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: a narrative review. World J Diabetes, 2021, 12(4): 331-343. |
45. | van Hulten V, van Meijel RLJ, Goossens GH. The impact of hypoxia exposure on glucose homeostasis in metabolically compromised humans: a systematic review. Rev Endocr Metab Disord, 2021, 22(2): 471-483. |
46. | van Meijel RLJ, Vogel MAA, Jocken JWE, et al. Mild intermittent hypoxia exposure induces metabolic and molecular adaptations in men with obesity. Mol Metab, 2021, 53: 101287. |
- 1. Hamlin MJ, Lizamore CA, Hopkins WG. The effect of natural or simulated altitude training on high-intensity intermittent running performance in team-sport athletes: a meta-analysis. Sports Med, 2018, 48(2): 431-446.
- 2. Schega L, Peter B, Brigadski T, et al. Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. J Sci Med Sport, 2016, 19(11): 941-945.
- 3. Mateika JH, El-Chami M, Shaheen D, et al. Intermittent hypoxia: a low-risk research tool with therapeutic value in humans. J Appl Physiol (1985), 2015, 118(5): 520-532.
- 4. Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol, 2014, 307(10): R1181-R1197.
- 5. Shobatake R, Ota H, Takahashi N, et al. The impact of intermittent hypoxia on metabolism and cognition. Int J Mol Sci, 2022, 23(21): 12957.
- 6. 查世乾, 陈豪, 郝玥影, 等. 急性间歇低氧暴露对心肺功能的影响. 中华结核和呼吸杂志, 2023, 46(3): 257-262.
- 7. Panza GS, Puri S, Lin HS, et al. Daily exposure to mild intermittent hypoxia reduces blood pressure in male patients with obstructive sleep apnea and hypertension. Am J Respir Crit Care Med, 2022, 205(8): 949-958.
- 8. Brugniaux JV, Pialoux V, Foster GE, et al. Effects of intermittent hypoxia on erythropoietin, soluble erythropoietin receptor and ventilation in humans. Eur Respir J, 2011, 37(4): 880-887.
- 9. Wang H, Shi XR, Schenck H, et al. Intermittent hypoxia training for treating mild cognitive impairment: a pilot study. Am J Alzheimers Dis Other Demen, 2020, 35: 1533317519896725.
- 10. Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med, 2011, 365(6): 537-547.
- 11. Shohet RV, Garcia JA. Keeping the engine primed: Hif factors as key regulators of cardiac metabolism and angiogenesis during ischemia. J Mol Med (Berl), 2007, 85(12): 1309-1315.
- 12. Wojan F, Stray-Gundersen S, Nagel MJ, et al. Short exposure to intermittent hypoxia increases erythropoietin levels in healthy individuals. J Appl Physiol (1985), 2021, 130(6): 1955-1960.
- 13. Tobin B, Costalat G, Renshaw GMC. Intermittent not continuous hypoxia provoked haematological adaptations in healthy seniors: hypoxic pattern may hold the key. Eur J Appl Physiol, 2020, 120(3): 707-718.
- 14. Serebrovska TV, Portnychenko AG, Drevytska TI, et al. Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Exp Biol Med (Maywood), 2017, 242(15): 1542-1552.
- 15. Lyamina NP, Lyamina SV, Senchiknin VN, et al. Normobaric hypoxia conditioning reduces blood pressure and normalizes nitric oxide synthesis in patients with arterial hypertension. J Hypertens, 2011, 29(11): 2265-2272.
- 16. Millet GP, Debevec T, Brocherie F, et al. Therapeutic use of exercising in hypoxia: Promises and limitations. Front Physiol, 2016, 7: 224.
- 17. Serebrovska TV, Grib ON, Portnichenko VI, et al. Intermittent hypoxia/hyperoxia versus intermittent hypoxia/normoxia: comparative study in prediabetes. High Alt Med Biol, 2019, 20(4): 383-391.
- 18. Brinkmann C, Metten A, Scriba P, et al. Hypoxia and hyperoxia affect serum angiogenic regulators in t2dm men during cycling. Int J Sports Med, 2017, 38(2): 92-98.
- 19. Serebrovskaya TV, Xi L. Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: practical analysis on methods and equipment. Exp Biol Med (Maywood), 2016, 241(15): 1708-1723.
- 20. Treml B, Gatterer H, Burtscher J, et al. A focused review on the maximal exercise responses in hypo- and normobaric hypoxia: divergent oxygen uptake and ventilation responses. Int J Environ Res Public Health, 2020, 17(14): 5239.
- 21. Afina AB, Oleg SG, Alexander AB, et al. The effects of intermittent hypoxic-hyperoxic exposures on lipid profile and inflammation in patients with metabolic syndrome. Front Cardiovasc Med, 2021, 8: 700826.
- 22. Behrendt T, Altorjay AC, Bielitzki R, et al. Influence of acute and chronic intermittent hypoxic-hyperoxic exposure prior to aerobic exercise on cardiovascular risk factors in geriatric patients - a randomized controlled trial. Front Physiol, 2022, 13: 1043536.
- 23. Behrendt T, Bielitzki R, Behrens M, et al. Effects of intermittent hypoxia-hyperoxia exposure prior to aerobic cycling exercise on physical and cognitive performance in geriatric patients - a randomized controlled trial. Front Physiol, 2022, 13: 899096.
- 24. Bestavashvili A, Glazachev O, Bestavashvili A, et al. Intermittent hypoxic-hyperoxic exposures effects in patients with metabolic syndrome: correction of cardiovascular and metabolic profile. Biomedicines, 2022, 10(3): 566.
- 25. Dudnik E, Zagaynaya E, Glazachev OS, et al. Intermittent hypoxia-hyperoxia conditioning improves cardiorespiratory fitness in older comorbid cardiac outpatients without hematological changes: a randomized controlled trial. High Alt Med Biol, 2018, 19(4): 339-343.
- 26. Glazachev O, Kopylov P, Susta D, et al. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: a controlled study. Clin Cardiol, 2017, 40(6): 370-376.
- 27. Glazachev OS, Dudnik EN, Zapara MA, et al. Adaptation to dosed hypoxia-hyperoxia as a factor in improving the quality of life of elderly patients with cardiac pathology. Adv Gerontol, 2019, 32(1-2): 145-151.
- 28. Syrkin AL, Glazachev OS, Kopylov FY, et al. Adaptation to intermittent hypoxia-hyperoxia in the rehabilitation of patients with ischemic heart disease: exercise tolerance and quality of life. Kardiologiia, 2017, 57(5): 10-16.
- 29. Bayer U, Glazachev OS, Likar R, et al. Adaptation to intermittent hypoxia-hyperoxia improves cognitive performance and exercise tolerance in elderly. Adv Gerontol, 2017, 30(2): 255-261.
- 30. Serebrovska ZO, Serebrovska TV, Kholin VA, et al. Intermittent hypoxia-hyperoxia training improves cognitive function and decreases circulating biomarkers of alzheimer's disease in patients with mild cognitive impairment: a pilot study. Int J Mol Sci, 2019, 20(21): 5405.
- 31. Serebrovska ZO, Xi L, Tumanovska LV, et al. Response of circulating inflammatory markers to intermittent hypoxia-hyperoxia training in healthy elderly people and patients with mild cognitive impairment. Life (Basel), 2022, 12(3): 432.
- 32. Burtscher J, Mallet RT, Burtscher M, et al. Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev, 2021, 68: 101343.
- 33. Iyalomhe O, Swierczek S, Enwerem N, et al. The role of hypoxia-inducible factor 1 in mild cognitive impairment. Cell Mol Neurobiol, 2017, 37(6): 969-977.
- 34. Zenaro E, Pietronigro E, Della Bianca V, et al. Neutrophils promote alzheimer's disease-like pathology and cognitive decline via lfa-1 integrin. Nat Med, 2015, 21(8): 880-886.
- 35. Swank AM, Horton J, Fleg JL, et al. Modest increase in peak vo2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail, 2012, 5(5): 579-585.
- 36. Serebrovskaya TV, Manukhina EB, Smith ML, et al. Intermittent hypoxia: Cause of or therapy for systemic hypertension? Exp Biol Med (Maywood), 2008, 233(6): 627-650.
- 37. Paniagua OA, Bryant MB, Panza JA. Role of endothelial nitric oxide in shear stress-induced vasodilation of human microvasculature: diminished activity in hypertensive and hypercholesterolemic patients. Circulation, 2001, 103(13): 1752-1758.
- 38. Vedam H, Phillips CL, Wang D, et al. Short-term hypoxia reduces arterial stiffness in healthy men. Eur J Appl Physiol, 2009, 105(1): 19-25.
- 39. Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension, 2020, 75(2): 285-292.
- 40. Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002, 360(9349): 1903-1913.
- 41. Zhang PZ, Downey HF, Chen SD, et al. Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia. Am J Physiol Regul Integr Comp Physiol, 2014, 307(6): R721-R730.
- 42. Debevec T. Hypoxia-related hormonal appetite modulation in humans during rest and exercise: Mini review. Front Physiol, 2017, 8: 366.
- 43. O'Hagan KA, Cocchiglia S, Zhdanov AV, et al. Pgc-1alpha is coupled to hif-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A, 2009, 106(7): 2188-2193.
- 44. Kim SW, Jung WS, Chung S, et al. Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: a narrative review. World J Diabetes, 2021, 12(4): 331-343.
- 45. van Hulten V, van Meijel RLJ, Goossens GH. The impact of hypoxia exposure on glucose homeostasis in metabolically compromised humans: a systematic review. Rev Endocr Metab Disord, 2021, 22(2): 471-483.
- 46. van Meijel RLJ, Vogel MAA, Jocken JWE, et al. Mild intermittent hypoxia exposure induces metabolic and molecular adaptations in men with obesity. Mol Metab, 2021, 53: 101287.
-
Previous Article
以胸腔积液为主要表现的胸膜裂头蚴病一例 -
Next Article
孤立性肺栓塞与深静脉血栓相关性肺栓塞的危险因素与发病机制的研究进展