1. |
Lange P, Ahmed E, Lahmar ZM, et al. Natural history and mechanisms of COPD. Respirology, 2021, 26(4): 298-321.
|
2. |
Yang J, Zhang Q, Zhang J, et al. Exploring the change of host and microorganism in chronic obstructive pulmonary disease patients based on metagenomic and metatranscriptomic sequencing. Front Microbiol, 2022, 13: 818281.
|
3. |
Perng D W, Chen PK. The relationship between airway inflammation and exacerbation in chronic obstructive pulmonary disease. Tuberc Respir Dis (Seoul), 2017, 80(4): 325-335.
|
4. |
Celli BR, Fabbri LM, Aaron SD, et al. An Updated Definition and Severity Classification of Chronic Obstructive Pulmonary Disease Exacerbations: The Rome Proposal. Am J Respir Crit Care Med, 2021, 204(11): 1251-1258.
|
5. |
Kim V, Aaron SD. What is a COPD exacerbation? Current definitions, pitfalls, challenges and opportunities for improvement. Eur Respir J, 2018, 52(5): 1801261.
|
6. |
D'Anna SE, Maniscalco M, Cappello F, et al. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med, 2021, 53(1): 135-150.
|
7. |
Tan KS, Lim RL, Liu J, et al. Respiratory viral infections in exacerbation of chronic airway inflammatory diseases: novel mechanisms and insights from the upper airway epithelium. Front Cell Dev Biol, 2020, 8: 99.
|
8. |
Liu J, Ran Z, Wang F, et al. Role of pulmonary microorganisms in the development of chronic obstructive pulmonary disease. Crit Rev Microbiol, 2021, 47(1): 1-12.
|
9. |
Guo-Parke H, Linden D, Weldon S, et al. Mechanisms of virus-induced airway immunity dysfunction in the pathogenesis of COPD disease, progression, and exacerbation. Front Immunol, 2020, 11: 1205.
|
10. |
Wiegman CH, Li F, Ryffel B, et al. Oxidative stress in ozone-induced chronic lung inflammation and emphysema: a facet of chronic obstructive pulmonary disease. Front Immunol, 2020, 11: 1957.
|
11. |
Wang J, Li Y, Zhao P, et al. Exposure to air pollution exacerbates inflammation in rats with preexisting COPD. Mediators Inflamm, 2020: 4260204.
|
12. |
Liu Y, Zhou T, Sun L, et al. The effect of Notch signal pathway on PM2. 5-induced Muc5ac in Beas-2B cells. Ecotoxicol Environ Saf, 2020, 203: 110956.
|
13. |
González-Díaz SN, de Lira-Quezada CE, Villarreal-González RV, et al. Environmental pollution and allergy. Rev Alerg Mex, 2022, 69(Suppl 1): s24-s30.
|
14. |
Sun Z, Zhu QL, Shen Y, et al. Dynamic changes of gut and lung microorganisms during chronic obstructive pulmonary disease exacerbations. Kaohsiung J Med Sci, 2020, 36(2): 107-113.
|
15. |
慢性阻塞性肺疾病急性加重(AECOPD)诊治专家组. 慢性阻塞性肺疾病急性加重(AECOPD)诊治中国专家共识(2017年更新版). 国际呼吸杂志, 2017, 37(14): 1041-1057.
|
16. |
Soler-Cataluña JJ, Piñera P, Trigueros JA, et al. Spanish COPD Guidelines (GesEPOC) 2021 Update. Diagnosis and Treatment of COPD Exacerbation Syndrome. Arch Bronconeumol, 2022, 58(2): T159-T170.
|
17. |
Miravitlles, M, Calle, M, Molina, J, et al. Spanish COPD guidelines (GesEPOC) 2021: Updated pharmacological treatment of stable COPD. Arch Bronconeumol, 2022, 58(1): 69-81.
|
18. |
Amado Diago CA, Figueira Gonçalves JM, Golpe R, et al. Classification of the severity of COPD exacerbations in hospitalized patients according to Rome vs GesEPOC criteria. Arch Bronconeumol, 2022, 59(1): 57-58.
|
19. |
Crisafulli, E, Sartori, G, Huerta, A, et al. Association between Rome classification among hospitalised patients with chronic obstructive pulmonary disease exacerbations and short and intermediate-term outcomes. Chest, 2023, 164(6): 1422-1433.
|
20. |
Reumkens, C, Endres, A, Simons, SO, et al. Application of the Rome severity classification of COPD exacerbations in a real-world cohort of hospitalised patients. ERJ Open Res, 2023, 9(3): 00569-2022.
|
21. |
马义铭, 龙颖姣, 陈燕. 从2021年“罗马提议”看慢性阻塞性肺疾病急性加重定义及分级的变迁. 结核与肺部疾病杂志, 2022, 3(1): 1-3.
|
22. |
Bansal, AG, Gaude, GS. Predictors of mortality in acute exacerbations of chronic obstructive pulmonary disease using the dyspnea, eosinopenia, consolidation, acidemia and atrial fibrillation score. Lung India, 2020, 37(1): 19-23.
|
23. |
Huang Q, He C, Xiong H, et al. DECAF score as a mortality predictor for acute exacerbation of chronic obstructive pulmonary disease: a systematic review and meta-analysis. BMJ Open, 2020, 10(10): e037923.
|
24. |
Chen Y, Li LIQ, Ge YL, et al. Procalcitonin (PCT) improves the accuracy and sensitivity of Dyspnea, Eosinopenia, Consolidation, Acidemia and Atrial Fibrillation (DECAF) score in predicting AECOPD Patients admission to ICU. Clin Lab, 2020, 66(3).
|
25. |
Mekanimitdee, P, Morasert, T, Patumanond, J, et al. The MAGENTA model for individual prediction of in-hospital mortality in chronic obstructive pulmonary disease with acute exacerbation in resource-limited countries: a development study. PLoS One, 2021, 16(8): e0256866.
|
26. |
Nadeem I, Light A, Donaldson C, et al. Use of DECAF scoring system to facilitate early discharge in acute exacerbation of COPD patients: a quality improvement project at a district general hospital. Future Healthc J, 2021, 8(1): e123-e126.
|
27. |
Sun W, Luo Z, Jin J, et al. The neutrophil/lymphocyte ratio could predict noninvasive mechanical ventilation failure in patients with acute exacerbation of chronic obstructive pulmonary disease: a retrospective observational study. Int J Chron Obstruct Pulmon Dis, 2021, 16: 2267-2277.
|
28. |
Aksoy E, Karakurt Z, Gungor S, et al. Neutrophil to lymphocyte ratio is a better indicator of COPD exacerbation severity in neutrophilic endotypes than eosinophilic endotypes. Int J Chron Obstruct Pulmon Dis, 2018, 13: 2721-2730.
|
29. |
Emami Ardestani M, Alavi-Naeini N. Evaluation of the relationship of neutrophil-to lymphocyte ratio and platelet-to-lymphocyte ratio with in-hospital mortality in patients with acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J, 2021, 15(4): 382-388.
|
30. |
Karauda T, Kornicki K, Jarri A, et al. Eosinopenia and neutrophil-to-lymphocyte count ratio as prognostic factors in exacerbation of COPD. Sci Rep, 2021, 11(1): 4804.
|
31. |
Gomez-Rosero JA, Cáceres-Galvis C, Ascuntar J, et al. Biomarkers as a prognostic factor in COPD exacerbation: a cohort study. COPD, 2021, 18(3): 325-332.
|
32. |
Li H, Zeng Z, Cheng J, et al. Prognostic role of NT-proBNP for in-hospital and 1-year mortality in patients with acute exacerbations of COPD. Int J Chron Obstruct Pulmon Dis, 2020, 15: 57-67.
|
33. |
Hu GP, Zhou YM, Wu ZL, et al. Red blood cell distribution width is an independent predictor of mortality for an acute exacerbation of COPD. Int J Tuberc Lung Dis., 2019, 23(7): 817-823.
|
34. |
Alparslan Bekir S, Tuncay E, Gungor S, et al. Can red blood cell distribution width (RDW) level predict the severity of acute exacerbation of chronic obstructive pulmonary disease (AECOPD)? Int J Clin Pract, 2021, 75(11): e14730.
|
35. |
刘元明, 文璐, 肖三玲, 等. 慢性阻塞性肺疾病急性加重患者外周血中性粒细胞/淋巴细胞比值、红细胞分布宽度的诊断价值及相关性分析. 中国呼吸与危重监护杂志, 2021, 20(12): 842-845.
|