Citation: 郑毅, 石平, 田丰丹, 杨兰, 余代瑶, 胡浩. 阻塞性睡眠呼吸暂停低通气综合征血清学氧化应激标志物研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(4): 293-299. doi: 10.7507/1671-6205.202309030 Copy
1. | Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019 Aug;7(8): 687-698. |
2. | Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia - revisited - the bad ugly and good: implications to the heart and brain. Sleep Medicine Reviews. 2015;20: 27–45. |
3. | Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1): 44-84. |
4. | McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000 Jun 1;108(8): 652-9. |
5. | Eisele HJ, Markart P, Schulz R. Obstructive Sleep Apnea, Oxidative Stress, and Cardiovascular Disease: Evidence from Human Studies. Oxid Med Cell Longev. 2015;2015: 608438. |
6. | Dalle-Donne I, Rossi R, Colombo R, et al. Biomarkers of oxidative damage in humandisease. Clin Chem. 2006 Apr;52(4): 601-23. |
7. | Simiakakis M, Kapsimalis F, Chaligiannis E, et al. Lack of effect of sleep apnea on oxidative stress in obstructive sleep apnea syndrome (OSAS) patients. PLoS One. 2012;7(6): e39172. |
8. | Mancuso M, Bonanni E, LoGerfo A, et al. Oxidative stress biomarkers in patients with untreated obstructive sleep apnea syndrome. Sleep Med. 2012 Jun;13(6): 632-6. |
9. | Cofta S, Winiarska HM, Płóciniczak A, et al. Oxidative Stress Markers and Severity of Obstructive Sleep Apnea. Adv Exp Med Biol. 2019;1222: 27-35. |
10. | Tauman R, Lavie L, Greenfeld M, et al. Oxidative stress in children with obstructive sleep apnea syndrome. J Clin Sleep Med. 2014 Jun 15;10(6): 677-81. |
11. | Fadaei R, Safari-Faramani R, Rezaei M, et al. Circulating levels of oxidized low-density lipoprotein in patients with obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath. 2020 Sep;24(3): 809-815. |
12. | Peres BU, Allen AJH, Shah A, et al. Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants (Basel). 2020 Jun 2;9(6): 476. |
13. | 符沙沙, 欧宗兴, 陈宗存, 等. 慢性阻塞性肺疾病合并阻塞性睡眠呼吸暂停低通气综合征与脂联素、8-异前列腺素F2α的关系. 中国现代医学杂志, 2019, 29(13): 51-55. |
14. | Pau MC, Zinellu E, Fois SS, et al. Circulating Malondialdehyde Concentrations in Obstructive Sleep Apnea (OSA): A Systematic Review and Meta-Analysis with Meta-Regression. Antioxidants (Basel). 2021 Jun 29;10(7): 1053. |
15. | Massy Z, Nguyen-Khoa T. Oxidative stress and chronic renal failure: markers and management. Journal Nephrology. 2002;15(4): 336–341. |
16. | Skvarilová M. , Bulava A. , Stejskal D. , et al. Increased level of advanced oxidation products (AOPP) as a marker of oxidative stress in patients with acute coronary syndrome. Biomedical Papers. 2005;149(1): 83–87. |
17. | Lyu X, Cai J, Yan R, et al. P66Shc is increased in peripheral blood mononuclear cells of the patients with obstructive sleep apnea. Int J Med Sci. 2023 Feb 13;20(4): 455-462. |
18. | Khan N, Lambert-Messerlian G, Monteiro JF, et al. Oxidative and carbonyl stress in pregnant women with obstructive sleep apnea. Sleep Breath. 2018 Mar;22(1): 233-240. |
19. | Dalle-Donne I, Aldini G, Carini M, et al. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med. 2006 Apr-Jun;10(2): 389-406. |
20. | Caimi G, Hopps E, Montana M, et al. Behaviour of carbonyl groups in several clinical conditions: Analysis of our survey. Clin Hemorheol Microcirc. 2020;74(3): 299-313. |
21. | Fang X, Chen J, Wang W, et al. Matrix metalloproteinase 9 (MMP9) level and MMP9 -1562C>T in patients with obstructive sleep apnea: a systematic review and meta-analysis of case-control studies. Sleep Med. 2020, 67: 110-119. |
22. | Franczak A, Skomro R, Bil-Lula I, et al. Activity of serum matrix metalloproteinase 9 in patients with obstructive sleep apnea. Pol Arch Intern Med. 2021 Jun 29;131(6): 586-589. |
23. | Arlouskaya Y, Sawicka A, Głowala M, et al. Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA) Concentrations in Patients with Obesity and the Risk of Obstructive Sleep Apnea (OSA). J Clin Med. 2019 Jun 23;8(6): 897. |
24. | Oyama J, Yamamoto H, Maeda T, et al. Continuous positive airway pressure therapy improves vascular dysfunction and decreases oxidative stress in patients with the metabolic syndrome and obstructive sleep apnea syndrome. Clin Cardiol. 2012 Apr;35(4): 231-6. |
25. | Shevtsova A, Gordiienko I, Tkachenko V, et al. Ischemia-Modified Albumin: Origins and Clinical Implications. Dis Markers. 2021 Jul 19;2021: 9945424. |
26. | Düger M, Seyhan EC, Günlüoğlu MZ, et al. Does ischemia-modified albumin level predict severity of obstructive sleep apnea? Sleep Breath. 2021 Mar;25(1): 65-73. |
27. | Varikasuvu SR, Dutt N, Sahu D. Obstructive sleep apnea and the effect of CPAP treatment on ischemia-modified albumin levels: a multi effect size meta-analysis with diagnostic test accuracy. Sleep Breath. 2019 Mar;23(1): 179-191. |
28. | Chai J, Wang J, Jiang R, et al. Diagnostic Value of Sestrin2 in Patients with Obstructive Sleep Apnea. Metab Syndr Relat Disord. 2020 Oct;18(8): 362-367. |
29. | Che X, Chai J, Fang Y, et al. Sestrin2 in hypoxia and hypoxia-related diseases. Redox Rep. 2021 Dec;26(1): 111-116. |
30. | Olivo E, La Chimia M, Ceramella J, et al. Moving beyond the Tip of the Iceberg: DJ-1 Implications in Cancer Metabolism. Cells. 2022 Apr 23;11(9): 1432. |
31. | Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol. 2021 Sep;204: 102114. |
32. | Vavougios G, Pastaka C, Tsilioni I, et al. The DJ-1 protein as a candidate biomarker in obstructive sleep apnea syndrome. Sleep Breath. 2014 Dec;18(4): 897-900. |
33. | Li J, Yu LQ, Jiang M, et al. Homocysteine level in patients with obstructive sleep apnea/hypopnea syndrome and the impact of continuous positive airway pressure treatment. Adv Clin Exp Med. 2018 Nov;27(11): 1549-1554. |
34. | Linz B, Hohl M, Lang L, et al. Repeated exposure to transient obstructive sleep apnea-related conditions causes an atrial fibrillation substrate in a chronic rat model. Heart Rhythm. 2021 Mar;18(3): 455-464. |
35. | Ntalapascha M, Makris D, Kyparos A, et al. Oxidative stress in patients with obstructive sleep apnea syndrome. Sleep Breath. 2013 May;17(2): 549-55. |
36. | Wu X, She W, Niu X, et al. Association between serum level of advanced glycation end products and obstructive sleep apnea-hypopnea syndrome: a meta-analysis. J Int Med Res. 2018 Nov;46(11): 4377-4385. |
37. | Volná J, Kemlink D, Kalousová M, et al. Biochemical oxidative stress-related markers in patients with obstructive sleep apnea. Med Sci Monit. 2011 Sep;17(9): CR491-7. |
38. | Marin-Oto M, Sanz-Rubio D, Santamaría-Martos F, et al. Soluble RAGE in COPD, with or without coexisting obstructive sleep apnoea. Respir Res. 2022 Jun 21;23(1): 163. |
39. | Panza GS, Alex RM, Yokhana SS, et al. Increased. Oxidative Stress, Loop Gain And The Arousal Threshold Are Clinical Predictors Of Increased Apnea Severity Following Exposure To Intermittent Hypoxia. Nat Sci Sleep. 2019 Oct 24;11: 265-279. |
40. | Ekin S, Yildiz H, Alp HH. NOX4, MDA, IMA and oxidative DNA damage: can these parameters be used to estimate the presence and severity of OSA? Sleep Breath. 2021 Mar;25(1): 529-536. |
41. | Fenech M. The in vitro micronucleus technique. Mutat Res. 2000 Nov 20;455(1-2): 81-95. |
42. | Xie J, Jiang J, Shi K, et al. DNA damage in peripheral blood lymphocytes from patients with OSAHS. Sleep Breath. 2014 Dec;18(4): 775-80. |
43. | Pan Y, Lu Y, Zhou JD, et al. Prospect of thioredoxin as a possibly effective tool to combat OSAHS. Sleep Breath. 2023 May;27(2): 421-429. |
44. | Takahashi K, Chin K, Nakamura H, et al. Plasma thioredoxin, a novel oxidative stress marker, in patients with obstructive sleep apnea before and after nasal continuous positive airway pressure. Antioxid Redox Signal. 2008 Apr;10(4): 715-26. |
45. | Guo Q, Wang Y, Li QY, et al. Levels of thioredoxin are related to the severity of obstructive sleep apnea: based on oxidative stress concept. Sleep Breath. 2013 Mar;17(1): 311-6. |
46. | Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014 Dec;47(18): 326-32. |
47. | Dinc ME, Ozdemir C, Ayan NN, et al. Thiol/disulfide homeostasis as a novel indicator of oxidative stress in obstructive sleep apnea patients. Laryngoscope. 2017 Jul;127(7): E244-E250. |
48. | Argüder E, Parlak EŞ, Kılıç H, et al. Thiol-disulfide as a novel indicator of obstructive sleep apnea. Clin Respir J. 2020 Jul;14(7): 652-658. |
49. | Sengoren Dikis O, Acat M, Casim H, et al. The relationship of thiol/disulfide homeostasis in the etiology of patients with obstructive sleep apnea: a case-control study. Aging Male. 2020 Dec;23(5): 679-686. |
50. | Wang XT, Zhao G, Tu L, et al. Continuous Positive Airway Pressure Effectively Alleviates Arrhythmias in Patients with Obstructive Sleep Apnea: Possible Relationship with Counteracting Oxidative Stress. Curr Med Sci. 2019 Feb;39(1): 52-58. |
51. | Hanikoglu F, Huseyinoglu N, Ozben S, et al. Increased plasma soluble tumor necrosis factor receptor-1 and myeloperoxidase activity in patients with obstructive sleep apnea syndrome. Int J Neurosci. 2015;125(9): 655-62. |
52. | Özkan E, Celik Y, Yucel-Lindberg T, et al. Current Smoking Determines the Levels of Circulating MPO and MMP-9 in Adults with Coronary Artery Disease and Obstructive Sleep Apnea. J Clin Med. 2023 Jun 14;12(12): 4053. |
53. | Arısoy A, Ekin S, Sertogullarindan B, et al. The Relationship Among Oxidative and Anti-Oxidative Parameters and Myeloperoxidase in Subjects With Obstructive Sleep Apnea Syndrome. Respir Care. 2016 Feb;61(2): 200-4. |
54. | Hira HS, Samal P, Kaur A, et al. Plasma level of hypoxanthine/xanthine as markers of oxidative stress with different stages of obstructive sleep apnea syndrome. Ann Saudi Med. 2014 Jul-Aug;34(4): 308-13. |
55. | Goswami B, Tayal D, Gupta N, et al. Paraoxonase: a multifaceted biomolecule. Clin Chim Acta. 2009 Dec;410(1-2): 1-12. |
56. | Kucuktepe U, Selcuk OT, Ellidag HY, et al. Serum hepcidin and paraoxonase levels in patients with severe, moderate, and mild obstructive sleep apnea hypopnea syndrome (OSAS): A comparison between OSAS patients and simple snoring patients. Cranio. 2022 May 6: 1-7. |
57. | May AM, Wang L, Strohl KP, et al. Sex-Specific Differential Responses of Circulating Biomarkers in Obstructive Sleep Apnea Treatment. A Post Hoc Analysis of a Randomized Controlled Trial. Ann Am Thorac Soc. 2020 May;17(5): 605-613. |
58. | Cave AC, Brewer AC, Narayanapanicker A, et al. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal. 2006 May-Jun;8(5-6): 691-728. |
59. | Del Ben M, Fabiani M, Loffredo L, et al. Oxidative stress mediated arterial dysfunction in patients with obstructive sleep apnoea and the effect of continuous positive airway pressure treatment. BMC Pulm Med. 2012 Jul 23;12: 36. |
60. | Rubattu S, Pagliaro B, Pierelli G, et al. Pathogenesis of target organ damage in hypertension: role of mitochondrial oxidative stress. Int J Mol Sci. 2014 Dec 31;16(1): 823-39. |
61. | Lu W, Kang J, Hu K, et al. The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia. Sleep Breath. 2017 Sep;21(3): 667-677. |
62. | Pignatelli P, Sanguigni V, Lenti L, et al. gp91phox-dependent expression of platelet CD40 ligand. Circulation. 2004 Sep 7;110(10): 1326-9. |
63. | Li D, Liu L, Chen H, et al. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol. 2003 May 1;23(5): 816-21. |
64. | Schönbeck U, Gerdes N, Varo N, et al. Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation. 2002 Dec 3;106(23): 2888-93. |
65. | Barceló A, de la Peña M, Ayllón O, et al. Increased plasma levels of asymmetric dimethylarginine and soluble CD40 ligand in patients with sleep apnea. Respiration. 2009;77(1): 85-90. |
66. | Kobayashi K, Nishimura Y, Shimada T, et al. Effect of continuous positive airway pressure on soluble CD40 ligand in patients with obstructive sleep apnea syndrome. Chest. 2006 Mar;129(3): 632-7. |
67. | Kosacka M, Brzecka A, Piesiak P, et al. Soluble ligand CD40 and uric acid as markers of atheromatosis in patients with obstructive sleep apnea. Adv Exp Med Biol. 2015;839: 55-60. |
- 1. Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019 Aug;7(8): 687-698.
- 2. Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia - revisited - the bad ugly and good: implications to the heart and brain. Sleep Medicine Reviews. 2015;20: 27–45.
- 3. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1): 44-84.
- 4. McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000 Jun 1;108(8): 652-9.
- 5. Eisele HJ, Markart P, Schulz R. Obstructive Sleep Apnea, Oxidative Stress, and Cardiovascular Disease: Evidence from Human Studies. Oxid Med Cell Longev. 2015;2015: 608438.
- 6. Dalle-Donne I, Rossi R, Colombo R, et al. Biomarkers of oxidative damage in humandisease. Clin Chem. 2006 Apr;52(4): 601-23.
- 7. Simiakakis M, Kapsimalis F, Chaligiannis E, et al. Lack of effect of sleep apnea on oxidative stress in obstructive sleep apnea syndrome (OSAS) patients. PLoS One. 2012;7(6): e39172.
- 8. Mancuso M, Bonanni E, LoGerfo A, et al. Oxidative stress biomarkers in patients with untreated obstructive sleep apnea syndrome. Sleep Med. 2012 Jun;13(6): 632-6.
- 9. Cofta S, Winiarska HM, Płóciniczak A, et al. Oxidative Stress Markers and Severity of Obstructive Sleep Apnea. Adv Exp Med Biol. 2019;1222: 27-35.
- 10. Tauman R, Lavie L, Greenfeld M, et al. Oxidative stress in children with obstructive sleep apnea syndrome. J Clin Sleep Med. 2014 Jun 15;10(6): 677-81.
- 11. Fadaei R, Safari-Faramani R, Rezaei M, et al. Circulating levels of oxidized low-density lipoprotein in patients with obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath. 2020 Sep;24(3): 809-815.
- 12. Peres BU, Allen AJH, Shah A, et al. Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants (Basel). 2020 Jun 2;9(6): 476.
- 13. 符沙沙, 欧宗兴, 陈宗存, 等. 慢性阻塞性肺疾病合并阻塞性睡眠呼吸暂停低通气综合征与脂联素、8-异前列腺素F2α的关系. 中国现代医学杂志, 2019, 29(13): 51-55.
- 14. Pau MC, Zinellu E, Fois SS, et al. Circulating Malondialdehyde Concentrations in Obstructive Sleep Apnea (OSA): A Systematic Review and Meta-Analysis with Meta-Regression. Antioxidants (Basel). 2021 Jun 29;10(7): 1053.
- 15. Massy Z, Nguyen-Khoa T. Oxidative stress and chronic renal failure: markers and management. Journal Nephrology. 2002;15(4): 336–341.
- 16. Skvarilová M. , Bulava A. , Stejskal D. , et al. Increased level of advanced oxidation products (AOPP) as a marker of oxidative stress in patients with acute coronary syndrome. Biomedical Papers. 2005;149(1): 83–87.
- 17. Lyu X, Cai J, Yan R, et al. P66Shc is increased in peripheral blood mononuclear cells of the patients with obstructive sleep apnea. Int J Med Sci. 2023 Feb 13;20(4): 455-462.
- 18. Khan N, Lambert-Messerlian G, Monteiro JF, et al. Oxidative and carbonyl stress in pregnant women with obstructive sleep apnea. Sleep Breath. 2018 Mar;22(1): 233-240.
- 19. Dalle-Donne I, Aldini G, Carini M, et al. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med. 2006 Apr-Jun;10(2): 389-406.
- 20. Caimi G, Hopps E, Montana M, et al. Behaviour of carbonyl groups in several clinical conditions: Analysis of our survey. Clin Hemorheol Microcirc. 2020;74(3): 299-313.
- 21. Fang X, Chen J, Wang W, et al. Matrix metalloproteinase 9 (MMP9) level and MMP9 -1562C>T in patients with obstructive sleep apnea: a systematic review and meta-analysis of case-control studies. Sleep Med. 2020, 67: 110-119.
- 22. Franczak A, Skomro R, Bil-Lula I, et al. Activity of serum matrix metalloproteinase 9 in patients with obstructive sleep apnea. Pol Arch Intern Med. 2021 Jun 29;131(6): 586-589.
- 23. Arlouskaya Y, Sawicka A, Głowala M, et al. Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA) Concentrations in Patients with Obesity and the Risk of Obstructive Sleep Apnea (OSA). J Clin Med. 2019 Jun 23;8(6): 897.
- 24. Oyama J, Yamamoto H, Maeda T, et al. Continuous positive airway pressure therapy improves vascular dysfunction and decreases oxidative stress in patients with the metabolic syndrome and obstructive sleep apnea syndrome. Clin Cardiol. 2012 Apr;35(4): 231-6.
- 25. Shevtsova A, Gordiienko I, Tkachenko V, et al. Ischemia-Modified Albumin: Origins and Clinical Implications. Dis Markers. 2021 Jul 19;2021: 9945424.
- 26. Düger M, Seyhan EC, Günlüoğlu MZ, et al. Does ischemia-modified albumin level predict severity of obstructive sleep apnea? Sleep Breath. 2021 Mar;25(1): 65-73.
- 27. Varikasuvu SR, Dutt N, Sahu D. Obstructive sleep apnea and the effect of CPAP treatment on ischemia-modified albumin levels: a multi effect size meta-analysis with diagnostic test accuracy. Sleep Breath. 2019 Mar;23(1): 179-191.
- 28. Chai J, Wang J, Jiang R, et al. Diagnostic Value of Sestrin2 in Patients with Obstructive Sleep Apnea. Metab Syndr Relat Disord. 2020 Oct;18(8): 362-367.
- 29. Che X, Chai J, Fang Y, et al. Sestrin2 in hypoxia and hypoxia-related diseases. Redox Rep. 2021 Dec;26(1): 111-116.
- 30. Olivo E, La Chimia M, Ceramella J, et al. Moving beyond the Tip of the Iceberg: DJ-1 Implications in Cancer Metabolism. Cells. 2022 Apr 23;11(9): 1432.
- 31. Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol. 2021 Sep;204: 102114.
- 32. Vavougios G, Pastaka C, Tsilioni I, et al. The DJ-1 protein as a candidate biomarker in obstructive sleep apnea syndrome. Sleep Breath. 2014 Dec;18(4): 897-900.
- 33. Li J, Yu LQ, Jiang M, et al. Homocysteine level in patients with obstructive sleep apnea/hypopnea syndrome and the impact of continuous positive airway pressure treatment. Adv Clin Exp Med. 2018 Nov;27(11): 1549-1554.
- 34. Linz B, Hohl M, Lang L, et al. Repeated exposure to transient obstructive sleep apnea-related conditions causes an atrial fibrillation substrate in a chronic rat model. Heart Rhythm. 2021 Mar;18(3): 455-464.
- 35. Ntalapascha M, Makris D, Kyparos A, et al. Oxidative stress in patients with obstructive sleep apnea syndrome. Sleep Breath. 2013 May;17(2): 549-55.
- 36. Wu X, She W, Niu X, et al. Association between serum level of advanced glycation end products and obstructive sleep apnea-hypopnea syndrome: a meta-analysis. J Int Med Res. 2018 Nov;46(11): 4377-4385.
- 37. Volná J, Kemlink D, Kalousová M, et al. Biochemical oxidative stress-related markers in patients with obstructive sleep apnea. Med Sci Monit. 2011 Sep;17(9): CR491-7.
- 38. Marin-Oto M, Sanz-Rubio D, Santamaría-Martos F, et al. Soluble RAGE in COPD, with or without coexisting obstructive sleep apnoea. Respir Res. 2022 Jun 21;23(1): 163.
- 39. Panza GS, Alex RM, Yokhana SS, et al. Increased. Oxidative Stress, Loop Gain And The Arousal Threshold Are Clinical Predictors Of Increased Apnea Severity Following Exposure To Intermittent Hypoxia. Nat Sci Sleep. 2019 Oct 24;11: 265-279.
- 40. Ekin S, Yildiz H, Alp HH. NOX4, MDA, IMA and oxidative DNA damage: can these parameters be used to estimate the presence and severity of OSA? Sleep Breath. 2021 Mar;25(1): 529-536.
- 41. Fenech M. The in vitro micronucleus technique. Mutat Res. 2000 Nov 20;455(1-2): 81-95.
- 42. Xie J, Jiang J, Shi K, et al. DNA damage in peripheral blood lymphocytes from patients with OSAHS. Sleep Breath. 2014 Dec;18(4): 775-80.
- 43. Pan Y, Lu Y, Zhou JD, et al. Prospect of thioredoxin as a possibly effective tool to combat OSAHS. Sleep Breath. 2023 May;27(2): 421-429.
- 44. Takahashi K, Chin K, Nakamura H, et al. Plasma thioredoxin, a novel oxidative stress marker, in patients with obstructive sleep apnea before and after nasal continuous positive airway pressure. Antioxid Redox Signal. 2008 Apr;10(4): 715-26.
- 45. Guo Q, Wang Y, Li QY, et al. Levels of thioredoxin are related to the severity of obstructive sleep apnea: based on oxidative stress concept. Sleep Breath. 2013 Mar;17(1): 311-6.
- 46. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014 Dec;47(18): 326-32.
- 47. Dinc ME, Ozdemir C, Ayan NN, et al. Thiol/disulfide homeostasis as a novel indicator of oxidative stress in obstructive sleep apnea patients. Laryngoscope. 2017 Jul;127(7): E244-E250.
- 48. Argüder E, Parlak EŞ, Kılıç H, et al. Thiol-disulfide as a novel indicator of obstructive sleep apnea. Clin Respir J. 2020 Jul;14(7): 652-658.
- 49. Sengoren Dikis O, Acat M, Casim H, et al. The relationship of thiol/disulfide homeostasis in the etiology of patients with obstructive sleep apnea: a case-control study. Aging Male. 2020 Dec;23(5): 679-686.
- 50. Wang XT, Zhao G, Tu L, et al. Continuous Positive Airway Pressure Effectively Alleviates Arrhythmias in Patients with Obstructive Sleep Apnea: Possible Relationship with Counteracting Oxidative Stress. Curr Med Sci. 2019 Feb;39(1): 52-58.
- 51. Hanikoglu F, Huseyinoglu N, Ozben S, et al. Increased plasma soluble tumor necrosis factor receptor-1 and myeloperoxidase activity in patients with obstructive sleep apnea syndrome. Int J Neurosci. 2015;125(9): 655-62.
- 52. Özkan E, Celik Y, Yucel-Lindberg T, et al. Current Smoking Determines the Levels of Circulating MPO and MMP-9 in Adults with Coronary Artery Disease and Obstructive Sleep Apnea. J Clin Med. 2023 Jun 14;12(12): 4053.
- 53. Arısoy A, Ekin S, Sertogullarindan B, et al. The Relationship Among Oxidative and Anti-Oxidative Parameters and Myeloperoxidase in Subjects With Obstructive Sleep Apnea Syndrome. Respir Care. 2016 Feb;61(2): 200-4.
- 54. Hira HS, Samal P, Kaur A, et al. Plasma level of hypoxanthine/xanthine as markers of oxidative stress with different stages of obstructive sleep apnea syndrome. Ann Saudi Med. 2014 Jul-Aug;34(4): 308-13.
- 55. Goswami B, Tayal D, Gupta N, et al. Paraoxonase: a multifaceted biomolecule. Clin Chim Acta. 2009 Dec;410(1-2): 1-12.
- 56. Kucuktepe U, Selcuk OT, Ellidag HY, et al. Serum hepcidin and paraoxonase levels in patients with severe, moderate, and mild obstructive sleep apnea hypopnea syndrome (OSAS): A comparison between OSAS patients and simple snoring patients. Cranio. 2022 May 6: 1-7.
- 57. May AM, Wang L, Strohl KP, et al. Sex-Specific Differential Responses of Circulating Biomarkers in Obstructive Sleep Apnea Treatment. A Post Hoc Analysis of a Randomized Controlled Trial. Ann Am Thorac Soc. 2020 May;17(5): 605-613.
- 58. Cave AC, Brewer AC, Narayanapanicker A, et al. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal. 2006 May-Jun;8(5-6): 691-728.
- 59. Del Ben M, Fabiani M, Loffredo L, et al. Oxidative stress mediated arterial dysfunction in patients with obstructive sleep apnoea and the effect of continuous positive airway pressure treatment. BMC Pulm Med. 2012 Jul 23;12: 36.
- 60. Rubattu S, Pagliaro B, Pierelli G, et al. Pathogenesis of target organ damage in hypertension: role of mitochondrial oxidative stress. Int J Mol Sci. 2014 Dec 31;16(1): 823-39.
- 61. Lu W, Kang J, Hu K, et al. The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia. Sleep Breath. 2017 Sep;21(3): 667-677.
- 62. Pignatelli P, Sanguigni V, Lenti L, et al. gp91phox-dependent expression of platelet CD40 ligand. Circulation. 2004 Sep 7;110(10): 1326-9.
- 63. Li D, Liu L, Chen H, et al. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol. 2003 May 1;23(5): 816-21.
- 64. Schönbeck U, Gerdes N, Varo N, et al. Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation. 2002 Dec 3;106(23): 2888-93.
- 65. Barceló A, de la Peña M, Ayllón O, et al. Increased plasma levels of asymmetric dimethylarginine and soluble CD40 ligand in patients with sleep apnea. Respiration. 2009;77(1): 85-90.
- 66. Kobayashi K, Nishimura Y, Shimada T, et al. Effect of continuous positive airway pressure on soluble CD40 ligand in patients with obstructive sleep apnea syndrome. Chest. 2006 Mar;129(3): 632-7.
- 67. Kosacka M, Brzecka A, Piesiak P, et al. Soluble ligand CD40 and uric acid as markers of atheromatosis in patients with obstructive sleep apnea. Adv Exp Med Biol. 2015;839: 55-60.
-
Previous Article
肺动脉高压的治疗进展 -
Next Article
良性气道狭窄的分子机制研究进展