Citation: 徐婷婷, 袁琪, 贾心予, 吉宁飞, 黄茂. 胸腺基质淋巴细胞生成素在支气管哮喘发病机制和治疗中的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(9): 673-678. doi: 10.7507/1671-6205.202401026 Copy
1. | Castro M, Corren J, Pavord ID, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med, 2018, 378(26): 2486-2496. |
2. | Holguin F, Cardet JC, Chung KF, et al. Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J, 2020, 55(1): 1900588. |
3. | Chapman KR, Albers FC, Chipps B, et al. The clinical benefit of mepolizumab replacing omalizumab in uncontrolled severe eosinophilic asthma. Allergy, 2019, 74(9): 1716-1726. |
4. | Kraft M, Brusselle G, FitzGerald JM, et al. Patient characteristics, biomarkers and exacerbation risk in severe, uncontrolled asthma. Eur Respir J, 2021, 58(6): 2100413. |
5. | 姚庆美, 陈玥, 黎友伦, 等. 重症哮喘气道上皮细胞损伤机制及潜在生物治疗靶点. 中国呼吸与危重监护杂志, 2022, 21(12): 899-903. |
6. | Stanbery AG, Shuchi S, Jakob von M, et al. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol, 2022, 150(6): 1302-1313. |
7. | Corren J, Ziegler SF. TSLP: from allergy to cancer. Nat Immunol, 2019, 20(12): 1603-1609. |
8. | Soh WT, Zhang J, Hollenberg MD, et al. Protease allergens as initiators-regulators of allergic inflammation. Allergy, 2023, 78(5): 1148-1168. |
9. | Ebina-Shibuya R, Leonard WJ. Role of thymic stromal lymphopoietin in allergy and beyond. Nat Rev Immunol, 2023, 23(1): 24-37. |
10. | Hong H, Liao S, Chen F, et al. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy, 2020, 75(11): 2794-2804. |
11. | Siracusa MC, Saenz SA, Hill DA, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature, 2011, 477(7363): 229-233. |
12. | Wang X, Hallen NR, Lee M, et al. Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol, 2023, 151(6): 1536-1549. |
13. | Lu H, Wu X, Peng Y, et al. TSLP promoting B cell proliferation and polarizing follicular helper T cell as a therapeutic target in IgG4-related disease. J Transl Med, 2022, 20(1): 414. |
14. | Nakajima S, Kabata H, Kabashima K, et al. Anti-TSLP antibodies: targeting a master regulator of type 2 immune responses. Allergol Int, 2020, 69(2): 197-203. |
15. | Matera MG, Rogliani P, Calzetta L, et al. TSLP inhibitors for asthma: current status and future prospects. Drugs, 2020, 80(5): 449-458. |
16. | Hoy SM. Tezepelumab: first approval. Drugs, 2022, 82(4): 461-468. |
17. | Mullard A. FDA approves first-in-class TSLP-targeted antibody for severe asthma. Nat Rev Drug Discov, 2022, 21(2): 89. |
18. | Kabata H, Flamar AL, Mahlakõiv T, et al. Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunol, 2020, 13(4): 626-636. |
19. | Gauvreau GM, Sehmi R, Ambrose CS, et al. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets, 2020, 24(8): 777-792. |
20. | Friend SL, Hosier S, Nelson A, et al. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp Hematol, 1994, 22(3): 321-328. |
21. | Cerps S, Sverrild A, Ramu S, et al. House dust mite sensitization and exposure affects bronchial epithelial anti-microbial response to viral stimuli in patients with asthma. Allergy, 2022, 77(8): 2498-2508. |
22. | Liang Y, Yu B, Chen J, et al. Thymic stromal lymphopoietin epigenetically upregulates Fc receptor γ subunit-related receptors on antigen-presenting cells and induces T(H)2/T(H)17 polarization through dectin-2. J Allergy Clin Immunol, 2019, 144(4): 1025-1035,e7. |
23. | Han NR, Moon PD, Nam SY, et al. TSLP up-regulates inflammatory responses through induction of autophagy in T cells. Faseb J, 2022, 36(2): e22148. |
24. | Liang S, Zhou Z, Zhou Z, et al. CBX4 regulates long-form thymic stromal lymphopoietin-mediated airway inflammation through SUMOylation in house dust mite-induced asthma. Am J Respir Cell Mol Biol, 2022, 66(6): 648-660. |
25. | Li W, Liao C, Du J, et al. Increased expression of long-isoform thymic stromal lymphopoietin is associated with rheumatoid arthritis and fosters inflammatory responses. Front Immunol, 2022, 13: 1079415. |
26. | Chan LKY, Lau TS, Chung KY, et al. Short-form thymic stromal lymphopoietin (sfTSLP) is the predominant isoform expressed by gynaecologic cancers and promotes tumour growth. Cancers (Basel), 2021, 13(5): 980. |
27. | Zhao J, Zhang J, Tang S, et al. The different functions of short and long thymic stromal lymphopoietin isoforms in autophagy-mediated asthmatic airway inflammation and remodeling. Immunobiology, 2021, 226(5): 152124. |
28. | van Heerden D, van Binnendijk RS, Tromp SAM, et al. Asthma-associated long TSLP inhibits the production of IgA. Int J Mol Sci, 2021, 22(7): 3592. |
29. | Bangert C, Rindler K, Krausgruber T, et al. Persistence of mature dendritic cells, T(H)2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL-4Rα blockade. Sci Immunol, 2021, 6(55): eabe2749. |
30. | Varricchi G, Pecoraro A, Marone G, et al. Thymic stromal lymphopoietin isoforms, inflammatory disorders, and cancer. Front Immunol, 2018, 9: 1595. |
31. | Lin SC, Cheng FY, Liu JJ, et al. Expression and regulation of thymic stromal lymphopoietin and thymic stromal lymphopoietin receptor heterocomplex in the innate-adaptive immunity of pediatric asthma. Int J Mol Sci, 2018, 19(4): 1231. |
32. | Toki S, Goleniewska K, Zhang J, et al. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy, 2020, 75(7): 1606-1617. |
33. | Obata-Ninomiya K, de Jesus Carrion S, Hu A, et al. Emerging role for thymic stromal lymphopoietin-responsive regulatory T cells in colorectal cancer progression in humans and mice. Sci Transl Med, 2022, 14(645): eabl6960. |
34. | Yao W, German B, Chraa D, et al. Keratinocyte-derived cytokine TSLP promotes growth and metastasis of melanoma by regulating the tumor-associated immune microenvironment. JCI Insight, 2022, 7(21): e161438. |
35. | Xue JM, An YF, Suo LM, et al. Livin in synergy with ras induces and sustains corticosteroid resistance in the airway mucosa. Int J Biol Sci, 2021, 17(8): 2089-2098. |
36. | Wang Y, Cao Z, Zhao H, et al. Nonylphenol exacerbates ovalbumin-induced allergic rhinitis via the TSLP-TSLPR/IL-7R pathway and JAK1/2-STAT3 signaling in a mouse model. Ecotoxicol Environ Saf, 2022, 243: 114005. |
37. | Wu CH, Lu CC, Huang CL, et al. Increased expression of thymic stromal lymphopoietin in chronic constriction injury of rat nerve. Int J Mol Sci, 2021, 22(13): 7105. |
38. | Hazzan T, Eberle J, Worm M, et al. Thymic stromal lymphopoietin interferes with the apoptosis of human skin mast cells by a dual strategy involving STAT5/Mcl-1 and JNK/Bcl-x(L). Cells, 2019, 8(8): 829. |
39. | Feng S, Zhang L, Bian XH, et al. Role of the TSLP-DC-OX40L pathway in asthma pathogenesis and airway inflammation in mice. Biochem Cell Biol, 2018, 96(3): 306-316. |
40. | Xue M, Xu S, Su L, et al. Surfactant protein-A inhibits thymic stromal lymphopoietin-mediated T follicular helper cell differentiation and IgE production in asthma. Clin Immunol, 2021, 231: 108822. |
41. | Gong Y, Luo L, Li L, et al. Diphenylcyclopropenone plays an effective therapeutic role by up-regulating the TSLP/OX40L/IL-13 pathway in severe alopecia areata. Exp Dermatol, 2021, 30(2): 278-283. |
42. | Lai JF, Thompson LJ, Ziegler SF. TSLP drives acute T(H)2-cell differentiation in lungs. J Allergy Clin Immunol, 2020, 146(6): 1406-1418,e7. |
43. | Hou T, Tsang MS, Kan LL, et al. IL-37 targets TSLP-primed basophils to alleviate atopic dermatitis. Int J Mol Sci, 2021, 22(14): 7393. |
44. | Brauweiler AM, Goleva E, Leung DYM. Staphylococcus aureus lipoteichoic acid initiates a TSLP-Basophil-IL4 axis in the skin. J Invest Dermatol, 2020, 140(4): 915-917,e2. |
45. | Kagoya R, Kondo K, Kishimoto-Urata M, et al. A murine model of eosinophilic chronic rhinosinusitis using the topical application of a vitamin D3 analog. Allergy, 2021, 76(5): 1432-1442. |
46. | Hashimoto T, Yokozeki H, Karasuyama H, et al. IL-31-generating network in atopic dermatitis comprising macrophages, basophils, thymic stromal lymphopoietin, and periostin. J Allergy Clin Immunol, 2023, 151(3): 737-746,e6. |
47. | Morshed M, Yousefi S, Stöckle C, et al. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy, 2012, 67(9): 1127-1137. |
48. | Lin YC, Lin YC, Tsai ML, et al. TSLP regulates mitochondrial ROS-induced mitophagy via histone modification in human monocytes. Cell Biosci, 2022, 12(1): 32. |
49. | Choi Y, Kim YM, Lee HR, et al. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy, 2020, 75(1): 95-103. |
50. | Brunetto E, De Monte L, Balzano G, et al. The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. J Immunother Cancer, 2019, 7(1): 45. |
51. | Segaud J, Yao W, Marschall P, et al. Context-dependent function of TSLP and IL-1β in skin allergic sensitization and atopic march. Nat Commun, 2022, 13(1): 4703. |
52. | Nieminen MM, Kaprio J, Koskenvuo M. A population-based study of bronchial asthma in adult twin pairs. Chest, 1991, 100(1): 70-75. |
53. | Duffy DL, Martin NG, Battistutta D, et al. Genetics of asthma and hay fever in Australian twins. Am Rev Respir Dis, 1990, 142(6 Pt 1): 1351-1358. |
54. | He JQ, Hallstrand TS, Knight D, et al. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness. J Allergy Clin Immunol, 2009, 124(2): 222-229. |
55. | Wang IJ, Wu LS, Lockett GA, et al. TSLP polymorphisms, allergen exposures, and the risk of atopic disorders in children. Ann Allergy Asthma Immunol, 2016, 116(2): 139-145,e1. |
56. | Wang W, Li Y, Lv Z, et al. Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol, 2018, 201(8): 2221-2231. |
57. | Du L, Xu C, Zeng Z, et al. Exploration of induced sputum BIRC3 levels and clinical implications in asthma. BMC Pulm Med, 2022, 22(1): 86. |
58. | Chorvinsky E, Nino G, Salka K, et al. TSLP bronchoalveolar lavage levels at baseline are linked to clinical disease severity and reduced lung function in children with asthma. Front Pediatr, 2022, 10: 971073. |
59. | Ko HK, Cheng SL, Lin CH, et al. Blood tryptase and thymic stromal lymphopoietin levels predict the risk of exacerbation in severe asthma. Sci Rep, 2021, 11(1): 8425. |
60. | Shikotra A, Choy DF, Ohri CM, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol, 2012, 129(1): 104-111, e1-e9. |
61. | Paller AS, Spergel JM, Mina-Osorio P, et al. The atopic march and atopic multimorbidity: Many trajectories, many pathways. J Allergy Clin Immunol, 2019, 143(1): 46-55. |
62. | Garcia-Garcia ML, Sastre B, Arroyas M, et al. Nasal TSLP and periostin in infants with severe bronchiolitis and risk of asthma at 4 years of age. Respir Res, 2023, 24(1): 26. |
63. | Malinczak CA, Fonseca W, Rasky AJ, et al. Sex-associated TSLP-induced immune alterations following early-life RSV infection leads to enhanced allergic disease. Mucosal Immunol, 2019, 12(4): 969-979. |
64. | van der Ploeg EK, Golebski K, van Nimwegen M, et al. Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Sci Immunol, 2021, 6(55): eabd3489. |
65. | Stier MT, Bloodworth MH, Toki S, et al. Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J Allergy Clin Immunol, 2016, 138(3): 814-824, e11. |
66. | Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med, 2021, 384(19): 1800-1809. |
67. | Emson C, Diver S, Chachi L, et al. CASCADE: a phase 2, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the effect of tezepelumab on airway inflammation in patients with uncontrolled asthma. Respir Res, 2020, 21(1): 265. |
68. | Menzies-Gow A, Colice G, Griffiths JM, et al. NAVIGATOR: a phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res, 2020, 21(1): 266. |
69. | Ishizuka T, Menzies-Gow A, Okada H, et al. Efficacy and safety of tezepelumab in patients recruited in Japan who participated in the phase 3 NAVIGATOR study. Allergol Int, 2023, 72(1): 82-88. |
70. | Jackson DJ, Bacharier LB, Gergen PJ, et al. Mepolizumab for urban children with exacerbation-prone eosinophilic asthma in the USA (MUPPITS-2): a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet, 2022, 400(10351): 502-511. |
71. | Wechsler ME, Menzies-Gow A, Brightling CE, et al. Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): a randomised, placebo-controlled, phase 3 study. Lancet Respir Med, 2022, 10(7): 650-660. |
72. | Wechsler ME, Colice G, Griffiths JM, et al. SOURCE: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel group trial to evaluate the efficacy and safety of tezepelumab in reducing oral corticosteroid use in adults with oral corticosteroid dependent asthma. Respir Res, 2020, 21(1): 264. |
73. | Diver S, Khalfaoui L, Emson C, et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med, 2021, 9(11): 1299-1312. |
74. | Sverrild A, Hansen S, Hvidtfeldt M, et al. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). Eur Respir J, 2022, 59(1), 2021, 59(1): 2101296. |
75. | Charriot J, Ahmed E, Bourdin A. Local targeting of TSLP: feat or defeat. Eur Respir J, 2023, 61(3): 2202389. |
76. | O'Byrne PM, Panettieri RA, Jr. , Taube C, et al. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther, 2023, 78: 102184. |
77. | Gauvreau GM, Hohlfeld JM, FitzGerald JM, et al. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma. Eur Respir J, 2023, 61(3): 2201193. |
78. | Gauvreau GM, Davis BE, Scadding G, et al. Allergen provocation tests in respiratory research: building on 50 years of experience. Eur Respir J, 2022, 60(2): 2102782. |
79. | Menzies-Gow A, Wechsler ME, Brightling CE, et al. Long-term safety and efficacy of tezepelumab in people with severe, uncontrolled asthma (DESTINATION): a randomised, placebo-controlled extension study. Lancet Respir Med, 2023, 11(5): 425-438. |
80. | Menzies-Gow A, Ponnarambil S, Downie J, et al. DESTINATION: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the long-term safety and tolerability of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res, 2020, 21(1): 279. |
- 1. Castro M, Corren J, Pavord ID, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med, 2018, 378(26): 2486-2496.
- 2. Holguin F, Cardet JC, Chung KF, et al. Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J, 2020, 55(1): 1900588.
- 3. Chapman KR, Albers FC, Chipps B, et al. The clinical benefit of mepolizumab replacing omalizumab in uncontrolled severe eosinophilic asthma. Allergy, 2019, 74(9): 1716-1726.
- 4. Kraft M, Brusselle G, FitzGerald JM, et al. Patient characteristics, biomarkers and exacerbation risk in severe, uncontrolled asthma. Eur Respir J, 2021, 58(6): 2100413.
- 5. 姚庆美, 陈玥, 黎友伦, 等. 重症哮喘气道上皮细胞损伤机制及潜在生物治疗靶点. 中国呼吸与危重监护杂志, 2022, 21(12): 899-903.
- 6. Stanbery AG, Shuchi S, Jakob von M, et al. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J Allergy Clin Immunol, 2022, 150(6): 1302-1313.
- 7. Corren J, Ziegler SF. TSLP: from allergy to cancer. Nat Immunol, 2019, 20(12): 1603-1609.
- 8. Soh WT, Zhang J, Hollenberg MD, et al. Protease allergens as initiators-regulators of allergic inflammation. Allergy, 2023, 78(5): 1148-1168.
- 9. Ebina-Shibuya R, Leonard WJ. Role of thymic stromal lymphopoietin in allergy and beyond. Nat Rev Immunol, 2023, 23(1): 24-37.
- 10. Hong H, Liao S, Chen F, et al. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy, 2020, 75(11): 2794-2804.
- 11. Siracusa MC, Saenz SA, Hill DA, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature, 2011, 477(7363): 229-233.
- 12. Wang X, Hallen NR, Lee M, et al. Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol, 2023, 151(6): 1536-1549.
- 13. Lu H, Wu X, Peng Y, et al. TSLP promoting B cell proliferation and polarizing follicular helper T cell as a therapeutic target in IgG4-related disease. J Transl Med, 2022, 20(1): 414.
- 14. Nakajima S, Kabata H, Kabashima K, et al. Anti-TSLP antibodies: targeting a master regulator of type 2 immune responses. Allergol Int, 2020, 69(2): 197-203.
- 15. Matera MG, Rogliani P, Calzetta L, et al. TSLP inhibitors for asthma: current status and future prospects. Drugs, 2020, 80(5): 449-458.
- 16. Hoy SM. Tezepelumab: first approval. Drugs, 2022, 82(4): 461-468.
- 17. Mullard A. FDA approves first-in-class TSLP-targeted antibody for severe asthma. Nat Rev Drug Discov, 2022, 21(2): 89.
- 18. Kabata H, Flamar AL, Mahlakõiv T, et al. Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunol, 2020, 13(4): 626-636.
- 19. Gauvreau GM, Sehmi R, Ambrose CS, et al. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets, 2020, 24(8): 777-792.
- 20. Friend SL, Hosier S, Nelson A, et al. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp Hematol, 1994, 22(3): 321-328.
- 21. Cerps S, Sverrild A, Ramu S, et al. House dust mite sensitization and exposure affects bronchial epithelial anti-microbial response to viral stimuli in patients with asthma. Allergy, 2022, 77(8): 2498-2508.
- 22. Liang Y, Yu B, Chen J, et al. Thymic stromal lymphopoietin epigenetically upregulates Fc receptor γ subunit-related receptors on antigen-presenting cells and induces T(H)2/T(H)17 polarization through dectin-2. J Allergy Clin Immunol, 2019, 144(4): 1025-1035,e7.
- 23. Han NR, Moon PD, Nam SY, et al. TSLP up-regulates inflammatory responses through induction of autophagy in T cells. Faseb J, 2022, 36(2): e22148.
- 24. Liang S, Zhou Z, Zhou Z, et al. CBX4 regulates long-form thymic stromal lymphopoietin-mediated airway inflammation through SUMOylation in house dust mite-induced asthma. Am J Respir Cell Mol Biol, 2022, 66(6): 648-660.
- 25. Li W, Liao C, Du J, et al. Increased expression of long-isoform thymic stromal lymphopoietin is associated with rheumatoid arthritis and fosters inflammatory responses. Front Immunol, 2022, 13: 1079415.
- 26. Chan LKY, Lau TS, Chung KY, et al. Short-form thymic stromal lymphopoietin (sfTSLP) is the predominant isoform expressed by gynaecologic cancers and promotes tumour growth. Cancers (Basel), 2021, 13(5): 980.
- 27. Zhao J, Zhang J, Tang S, et al. The different functions of short and long thymic stromal lymphopoietin isoforms in autophagy-mediated asthmatic airway inflammation and remodeling. Immunobiology, 2021, 226(5): 152124.
- 28. van Heerden D, van Binnendijk RS, Tromp SAM, et al. Asthma-associated long TSLP inhibits the production of IgA. Int J Mol Sci, 2021, 22(7): 3592.
- 29. Bangert C, Rindler K, Krausgruber T, et al. Persistence of mature dendritic cells, T(H)2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL-4Rα blockade. Sci Immunol, 2021, 6(55): eabe2749.
- 30. Varricchi G, Pecoraro A, Marone G, et al. Thymic stromal lymphopoietin isoforms, inflammatory disorders, and cancer. Front Immunol, 2018, 9: 1595.
- 31. Lin SC, Cheng FY, Liu JJ, et al. Expression and regulation of thymic stromal lymphopoietin and thymic stromal lymphopoietin receptor heterocomplex in the innate-adaptive immunity of pediatric asthma. Int J Mol Sci, 2018, 19(4): 1231.
- 32. Toki S, Goleniewska K, Zhang J, et al. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy, 2020, 75(7): 1606-1617.
- 33. Obata-Ninomiya K, de Jesus Carrion S, Hu A, et al. Emerging role for thymic stromal lymphopoietin-responsive regulatory T cells in colorectal cancer progression in humans and mice. Sci Transl Med, 2022, 14(645): eabl6960.
- 34. Yao W, German B, Chraa D, et al. Keratinocyte-derived cytokine TSLP promotes growth and metastasis of melanoma by regulating the tumor-associated immune microenvironment. JCI Insight, 2022, 7(21): e161438.
- 35. Xue JM, An YF, Suo LM, et al. Livin in synergy with ras induces and sustains corticosteroid resistance in the airway mucosa. Int J Biol Sci, 2021, 17(8): 2089-2098.
- 36. Wang Y, Cao Z, Zhao H, et al. Nonylphenol exacerbates ovalbumin-induced allergic rhinitis via the TSLP-TSLPR/IL-7R pathway and JAK1/2-STAT3 signaling in a mouse model. Ecotoxicol Environ Saf, 2022, 243: 114005.
- 37. Wu CH, Lu CC, Huang CL, et al. Increased expression of thymic stromal lymphopoietin in chronic constriction injury of rat nerve. Int J Mol Sci, 2021, 22(13): 7105.
- 38. Hazzan T, Eberle J, Worm M, et al. Thymic stromal lymphopoietin interferes with the apoptosis of human skin mast cells by a dual strategy involving STAT5/Mcl-1 and JNK/Bcl-x(L). Cells, 2019, 8(8): 829.
- 39. Feng S, Zhang L, Bian XH, et al. Role of the TSLP-DC-OX40L pathway in asthma pathogenesis and airway inflammation in mice. Biochem Cell Biol, 2018, 96(3): 306-316.
- 40. Xue M, Xu S, Su L, et al. Surfactant protein-A inhibits thymic stromal lymphopoietin-mediated T follicular helper cell differentiation and IgE production in asthma. Clin Immunol, 2021, 231: 108822.
- 41. Gong Y, Luo L, Li L, et al. Diphenylcyclopropenone plays an effective therapeutic role by up-regulating the TSLP/OX40L/IL-13 pathway in severe alopecia areata. Exp Dermatol, 2021, 30(2): 278-283.
- 42. Lai JF, Thompson LJ, Ziegler SF. TSLP drives acute T(H)2-cell differentiation in lungs. J Allergy Clin Immunol, 2020, 146(6): 1406-1418,e7.
- 43. Hou T, Tsang MS, Kan LL, et al. IL-37 targets TSLP-primed basophils to alleviate atopic dermatitis. Int J Mol Sci, 2021, 22(14): 7393.
- 44. Brauweiler AM, Goleva E, Leung DYM. Staphylococcus aureus lipoteichoic acid initiates a TSLP-Basophil-IL4 axis in the skin. J Invest Dermatol, 2020, 140(4): 915-917,e2.
- 45. Kagoya R, Kondo K, Kishimoto-Urata M, et al. A murine model of eosinophilic chronic rhinosinusitis using the topical application of a vitamin D3 analog. Allergy, 2021, 76(5): 1432-1442.
- 46. Hashimoto T, Yokozeki H, Karasuyama H, et al. IL-31-generating network in atopic dermatitis comprising macrophages, basophils, thymic stromal lymphopoietin, and periostin. J Allergy Clin Immunol, 2023, 151(3): 737-746,e6.
- 47. Morshed M, Yousefi S, Stöckle C, et al. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy, 2012, 67(9): 1127-1137.
- 48. Lin YC, Lin YC, Tsai ML, et al. TSLP regulates mitochondrial ROS-induced mitophagy via histone modification in human monocytes. Cell Biosci, 2022, 12(1): 32.
- 49. Choi Y, Kim YM, Lee HR, et al. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy, 2020, 75(1): 95-103.
- 50. Brunetto E, De Monte L, Balzano G, et al. The IL-1/IL-1 receptor axis and tumor cell released inflammasome adaptor ASC are key regulators of TSLP secretion by cancer associated fibroblasts in pancreatic cancer. J Immunother Cancer, 2019, 7(1): 45.
- 51. Segaud J, Yao W, Marschall P, et al. Context-dependent function of TSLP and IL-1β in skin allergic sensitization and atopic march. Nat Commun, 2022, 13(1): 4703.
- 52. Nieminen MM, Kaprio J, Koskenvuo M. A population-based study of bronchial asthma in adult twin pairs. Chest, 1991, 100(1): 70-75.
- 53. Duffy DL, Martin NG, Battistutta D, et al. Genetics of asthma and hay fever in Australian twins. Am Rev Respir Dis, 1990, 142(6 Pt 1): 1351-1358.
- 54. He JQ, Hallstrand TS, Knight D, et al. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness. J Allergy Clin Immunol, 2009, 124(2): 222-229.
- 55. Wang IJ, Wu LS, Lockett GA, et al. TSLP polymorphisms, allergen exposures, and the risk of atopic disorders in children. Ann Allergy Asthma Immunol, 2016, 116(2): 139-145,e1.
- 56. Wang W, Li Y, Lv Z, et al. Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol, 2018, 201(8): 2221-2231.
- 57. Du L, Xu C, Zeng Z, et al. Exploration of induced sputum BIRC3 levels and clinical implications in asthma. BMC Pulm Med, 2022, 22(1): 86.
- 58. Chorvinsky E, Nino G, Salka K, et al. TSLP bronchoalveolar lavage levels at baseline are linked to clinical disease severity and reduced lung function in children with asthma. Front Pediatr, 2022, 10: 971073.
- 59. Ko HK, Cheng SL, Lin CH, et al. Blood tryptase and thymic stromal lymphopoietin levels predict the risk of exacerbation in severe asthma. Sci Rep, 2021, 11(1): 8425.
- 60. Shikotra A, Choy DF, Ohri CM, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol, 2012, 129(1): 104-111, e1-e9.
- 61. Paller AS, Spergel JM, Mina-Osorio P, et al. The atopic march and atopic multimorbidity: Many trajectories, many pathways. J Allergy Clin Immunol, 2019, 143(1): 46-55.
- 62. Garcia-Garcia ML, Sastre B, Arroyas M, et al. Nasal TSLP and periostin in infants with severe bronchiolitis and risk of asthma at 4 years of age. Respir Res, 2023, 24(1): 26.
- 63. Malinczak CA, Fonseca W, Rasky AJ, et al. Sex-associated TSLP-induced immune alterations following early-life RSV infection leads to enhanced allergic disease. Mucosal Immunol, 2019, 12(4): 969-979.
- 64. van der Ploeg EK, Golebski K, van Nimwegen M, et al. Steroid-resistant human inflammatory ILC2s are marked by CD45RO and elevated in type 2 respiratory diseases. Sci Immunol, 2021, 6(55): eabd3489.
- 65. Stier MT, Bloodworth MH, Toki S, et al. Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J Allergy Clin Immunol, 2016, 138(3): 814-824, e11.
- 66. Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med, 2021, 384(19): 1800-1809.
- 67. Emson C, Diver S, Chachi L, et al. CASCADE: a phase 2, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the effect of tezepelumab on airway inflammation in patients with uncontrolled asthma. Respir Res, 2020, 21(1): 265.
- 68. Menzies-Gow A, Colice G, Griffiths JM, et al. NAVIGATOR: a phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res, 2020, 21(1): 266.
- 69. Ishizuka T, Menzies-Gow A, Okada H, et al. Efficacy and safety of tezepelumab in patients recruited in Japan who participated in the phase 3 NAVIGATOR study. Allergol Int, 2023, 72(1): 82-88.
- 70. Jackson DJ, Bacharier LB, Gergen PJ, et al. Mepolizumab for urban children with exacerbation-prone eosinophilic asthma in the USA (MUPPITS-2): a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet, 2022, 400(10351): 502-511.
- 71. Wechsler ME, Menzies-Gow A, Brightling CE, et al. Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): a randomised, placebo-controlled, phase 3 study. Lancet Respir Med, 2022, 10(7): 650-660.
- 72. Wechsler ME, Colice G, Griffiths JM, et al. SOURCE: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel group trial to evaluate the efficacy and safety of tezepelumab in reducing oral corticosteroid use in adults with oral corticosteroid dependent asthma. Respir Res, 2020, 21(1): 264.
- 73. Diver S, Khalfaoui L, Emson C, et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med, 2021, 9(11): 1299-1312.
- 74. Sverrild A, Hansen S, Hvidtfeldt M, et al. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). Eur Respir J, 2022, 59(1), 2021, 59(1): 2101296.
- 75. Charriot J, Ahmed E, Bourdin A. Local targeting of TSLP: feat or defeat. Eur Respir J, 2023, 61(3): 2202389.
- 76. O'Byrne PM, Panettieri RA, Jr. , Taube C, et al. Development of an inhaled anti-TSLP therapy for asthma. Pulm Pharmacol Ther, 2023, 78: 102184.
- 77. Gauvreau GM, Hohlfeld JM, FitzGerald JM, et al. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma. Eur Respir J, 2023, 61(3): 2201193.
- 78. Gauvreau GM, Davis BE, Scadding G, et al. Allergen provocation tests in respiratory research: building on 50 years of experience. Eur Respir J, 2022, 60(2): 2102782.
- 79. Menzies-Gow A, Wechsler ME, Brightling CE, et al. Long-term safety and efficacy of tezepelumab in people with severe, uncontrolled asthma (DESTINATION): a randomised, placebo-controlled extension study. Lancet Respir Med, 2023, 11(5): 425-438.
- 80. Menzies-Gow A, Ponnarambil S, Downie J, et al. DESTINATION: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the long-term safety and tolerability of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res, 2020, 21(1): 279.
-
Previous Article
阻塞性睡眠呼吸暂停合并2型糖尿病的机制 -
Next Article
呼吸调节紊乱研究进展