1. |
Celli B, Fabbri L, Criner G, et al. Definition and nomenclature of chronic obstructive pulmonary disease: time for its revision. Am J Respir Crit Care Med, 2022, 206(11): 1317-1325.
|
2. |
Li M, Hanxiang C, Na Z, et al. Burden of COPD in China and the global from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. BMJ Open Respir Res, 2023, 10(1): e001698.
|
3. |
Committee G E. Gold Executive Committee. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease (2023 Report) [EB/OL].https://goldcopd.org/.
|
4. |
Dong T, Santos S, Yang Z, et al. Sputum and salivary protein biomarkers and point-of-care biosensors for the management of COPD. Analyst, 2020, 145(5): 1583-1604.
|
5. |
黎仙, 李景云, 张媛, 等. IL-8在气道慢性炎症中的作用及研究进展. 临床耳鼻咽喉头颈外科杂志, 2021, 35(12): 1144-1148.
|
6. |
Rynne J, Ortiz-Zapater E, Bagley DC, et al. The RNA binding proteins ZFP36L1 and ZFP36L2 are dysregulated in airway epithelium in human and a murine model of asthma. Front Cell Dev Biol, 2023, 11(12): 41008.
|
7. |
Cicchetto A C, Jacobson E C, Sunshine H, et al. ZFP36-mediated mRNA decay regulates metabolism. Cell Rep, 2023, 42(5): 112411.
|
8. |
Cook ME, Bradstreet TR, Webber AM, et al. The ZFP36 family of RNA binding proteins regulates homeostatic and autoreactive T cell responses. Sci Immunol, 2022, 7(76): eabo0981.
|
9. |
Liu L L, Liu L, Liu HH, et al. Levamisole suppresses adipogenesis of aplastic anaemia-derived bone marrow mesenchymal stem cells through ZFP36L1-PPARGC1B axis. J Cell Mol Med, 2018, 22(9): 4496-4506.
|
10. |
Hodson DJ, Screen M, Turner M. RNA-binding proteins in hematopoiesis and hematological malignancy. Blood, 2019, 133(22): 2365-2373.
|
11. |
Bathula C S, Chen J, Kumar R, et al. ZFP36L1 Regulates Fgf21 mRNA turnover and modulates alcoholic hepatic steatosis and inflammation in mice. Am J Pathol, 2022, 192(2): 208-225.
|
12. |
Son YO, Kim HE, Choi WS, et al. RNA-binding protein ZFP36L1 regulates osteoarthritis by modulating members of the heat shock protein 70 family. Nat Commun, 2019, 10(1): 77.
|
13. |
中华医学会呼吸病学分会慢性阻塞性肺疾病学组, 中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会. 慢性阻塞性肺疾病诊治指南(2021年修订版). 中华结核和呼吸杂志, 2021, 44(3): 170-205.
|
14. |
徐锋, 范林林, 康霞, 等. LINC00626通过JAK1/STAT3/KHSRP信号轴调控肺腺癌转移的恶性进展. 中国呼吸与危重监护杂志, 2023, 22(9): 646-656.
|
15. |
Agarwal AK, Raja A, Brown BD. Chronic obstructive pulmonary disease. StatPearls. Treasure Island (FL) ineligible companies. Avais Raja, Brandon Brown, StatPearls Publishing LLC, 2024: 2-6.
|
16. |
Lodge KM, Vassallo A, Liu B, et al. Hypoxia increases the potential for neutrophil-mediated endothelial damage in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2022, 205(8): 903-916.
|
17. |
范亚丽, 马瑞敏, 王婧玮, 等. 尘肺病合并慢性阻塞性肺疾病血嗜酸性粒细胞与临床特征的相关性. 中华劳动卫生职业病杂志, 2023, 41(8): 605-611.
|
18. |
Radicioni G, Ceppe A, Ford A, et al. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir Med, 2021, 9(11): 1241-1254.
|
19. |
蒋海燕, 陈林, 邵春, 等. IL-8在人肺上皮细胞的MUC5B表达及调控通路. 医学理论与实践, 2022, 35(7): 1087-1090.
|
20. |
周芳, 陈林, 蔡佳, 等. 姜黄素基于IL-8/MUC5ac信号通路对慢性阻塞性肺疾病大鼠的干预效果. 中国老年学杂志, 2021, 41(23): 5262-5266.
|
21. |
Li S, Liu S, Chen R A, et al. Activation of the MKK3-p38-MK2-ZFP36 axis by coronavirus infection restricts the upregulation of AU-rich element-containing transcripts in proinflammatory responses. J Virol, 2022, 96(5): e0208621.
|
22. |
Carreño A, Lykke-Andersen J. The conserved CNOT1 interaction motif of tristetraprolin regulates ARE-mRNA decay independently of the p38 MAPK-MK2 kinase pathway. Mol Cell Biol, 2022, 42(9): e0005522.
|
23. |
Tollenaere MAX, Tiedje C, Rasmussen S, et al. GIGYF1/2-driven cooperation between ZNF598 and TTP in posttranscriptional regulation of inflammatory signaling. Cell Rep, 2019, 26(13): 3511-3521.
|
24. |
Winzen R, Gowrishankar G, Bollig F, et al. Distinct domains of AU-rich elements exert different functions in mRNA destabilization and stabilization by p38 mitogen-activated protein kinase or HuR. Mol Cell Biol, 2004, 24(11): 4835-4847.
|
25. |
Winzen R, Thakur BK, Dittrich-Breiholz O, et al. Functional analysis of KSRP interaction with the AU-rich element of interleukin-8 and identification of inflammatory mRNA targets. Mol Cell Biol, 2007, 27(23): 8388-8400.
|
26. |
Zhao XK, Che P, Cheng ML, et al. Tristetraprolin down-regulation contributes to persistent TNF-alpha expression induced by cigarette smoke extract through a post-transcriptional mechanism. PLoS One, 2016, 11(12): e0167451.
|
27. |
Nair PM, Starkey MR, Haw TJ, et al. Enhancing tristetraprolin activity reduces the severity of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Clin Transl Immunology, 2019, 8(10): e01084.
|
28. |
Snyder BL, Huang R, Burkholder AB, et al. Synergistic roles of tristetraprolin family members in myeloid cells in the control of inflammation. Life Sci Alliance, 2024, 7(1): e202302222.
|
29. |
Hyatt LD, Wasserman GA, Rah YJ, et al. Myeloid ZFP36L1 does not regulate inflammation or host defense in mouse models of acute bacterial infection. PLoS One, 2014, 9(10): e109072.
|
30. |
Zinellu A, Zinellu E, Mangoni AA, et al. Clinical significance of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in acute exacerbations of COPD: present and future. Eur Respir Rev, 2022, 31(166): 220095.
|
31. |
崔莉, 冉献贵, 刘斌. NLR、PLR及FIB对慢性阻塞性肺疾病急性加重的诊断价值. 现代临床医学, 2022, 48(5): 332-334.
|
32. |
Feng X, Xiao H, Duan Y, et al. Prognostic value of neutrophil to lymphocyte ratio for predicting 90-day poor outcomes in hospitalized patients with acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2023, 18: 1219-1230.
|