1. |
Ben Salem C. Acute respiratory distress syndrome. N Engl J Med, 2017, 377(19): 1904.
|
2. |
Mortimer L, Moreau F, MacDonald JA, et al. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat Immunol, 2016, 17(10): 1176-1186.
|
3. |
Philpott DJ, Sorbara MT, Robertson SJ, et al. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol, 2014, 14(1): 9-23.
|
4. |
Sokolowska M, Chen LY, Liu Y, et al. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. J Immunol, 2015, 194(11): 5472-5487.
|
5. |
Blank R, Napolitano LM. Epidemiology of ARDS and ALI. Crit Care Clin, 2011, 27(3): 439-458.
|
6. |
Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med, 2017, 377(6): 562-572.
|
7. |
Zheng Y, Liu J, Chen P, et al. Exosomal miR-22-3p from human umbilical cord blood-derived mesenchymal stem cells protects against lipopolysaccharid-induced acute lung injury. Life Sci, 2021, 269: 119004.
|
8. |
Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol, 2012, 28(1): 137-161.
|
9. |
Li P, Liu H, Zhang Y, et al. Endotoxin tolerance inhibits degradation of tumor necrosis factor receptor–associated factor 3 by suppressing pellino 1 expression and the K48 ubiquitin ligase activity of cellular inhibitor of apoptosis protein 2. J Infect Dis, 2016, 214(6): 906-915.
|
10. |
Xie M, Yu Y, Kang R, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun, 2016, 7(1): 13280.
|
11. |
Schmaler M, Jann NJ, Ferracin F, et al. T and B cells are not required for clearing Staphylococcus aureus in systemic infection despite a strong TLR2–MyD88-dependent T cell activation. J Immunol, 2011, 186(1): 443-452.
|
12. |
Stoll H, Dengjel J, Nerz C, et al. Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. Infect Immun, 2005, 73(4): 2411-2423.
|
13. |
Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol, 2009, 183(2): 787-791.
|
14. |
Akira S. Toll-like receptor signaling. J Biol Chem, 2003, 278(40): 38105-38108.
|
15. |
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 2010, 11(5): 373-384.
|
16. |
Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, 535(7610): 153-158.
|
17. |
Schroder K, Sagulenko V, Zamoshnikova A, et al. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology, 2012, 217(12): 1325-1329.
|
18. |
Hong CY, Zhang HD, Liu XY, et al. Attenuation of hyperoxic acute lung injury by Lycium barbarum polysaccharide via inhibiting NLRP3 inflammasome. Arch Pharm Res, 2019, 42(10): 902-908.
|
19. |
Wu J, Liu B, Mao W, et al. Prostaglandin E2 regulates activation of mouse peritoneal macrophages by Staphylococcus aureus through Toll-like receptor 2, Toll-like receptor 4, and NLRP3 inflammasome signaling. J Innate Immun, 2020, 12(2): 154-169.
|
20. |
Ivanov AI, Romanovsky AA. Prostaglandin E2 as a mediator of fever: synthesis and catabolism. Front Biosci, 2004, 9(3): 1977-1993.
|
21. |
Hirata T, Narumiya S. Prostanoid receptors. Chem Rev, 2011, 111(10): 6209-6230.
|
22. |
O'Garra A, Barrat FJ, Castro AG, et al. Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev, 2008, 223(1): 114-131.
|
23. |
Shindo Y, Iwamoto K, Mouri K, et al. Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nat Commun, 2016, 7(1): 10485.
|
24. |
Filardy AA, He J, Bennink J, et al. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages. Mucosal Immunol, 2016, 9(4): 850-858.
|
25. |
Hofmann SR, Kubasch AS, Ioannidis C, et al. Altered expression of IL-10 family cytokines in monocytes from CRMO patients result in enhanced IL-1β expression and release. Clin Immunol, 2015, 161(2): 300-307.
|
26. |
Gao Y, Tu D, Yang R, et al. Through reducing ROS production, IL-10 suppresses caspase-1-dependent IL-1β maturation, thereby preventing chronic neuroinflammation and neurodegeneration. Int J Mol Sci, 2020, 21(2): 465.
|