1. |
Du L, Wang X, Chen S, et al. The AIM2 inflammasome: A novel biomarker and target in cardiovascular disease. Pharmacol Res. 2022, 186: 106533.
|
2. |
Wang L, Sun L, Byrd KM, et al. AIM2 Inflammasome's First Decade of Discovery: Focus on Oral Diseases. Front Immunol, 2020, 11: 1487.
|
3. |
Zhang M, Jin C, Yang Y, et al. AIM2 promotes non-small-cell lung cancer cell growth through inflammasome-dependent pathway. J Cell Physiol, 2019, 234(11): 20161-20173.
|
4. |
Alanazi M, Weng T, McLeod L, et al. Cytosolic DNA sensor AIM2 promotes KRAS-driven lung cancer independent of inflammasomes. Cancer Sci, 2024, 115(6): 1834-1850.
|
5. |
Qi M, Dai D, Liu J, et al. AIM2 promotes the development of non-small cell lung cancer by modulating mitochondrial dynamics. Oncogene, 2020, 39(13): 2707-2723.
|
6. |
Zheng JQ, Lin CH, Lee HH, et al. AIM2 upregulation promotes metastatic progression and PD-L1 expression in lung adenocarcinoma. Cancer Sci, 2023, 114(1): 306-320.
|
7. |
Colarusso C, Terlizzi M, Falanga A, et al. Absent in melanoma 2 (AIM2) positive profile identifies a poor prognosis of lung adenocarcinoma patients. Int Immunopharmacol, 2023, 124(Pt B): 110990.
|
8. |
Ye H, Yu W, Li Y, et al. AIM2 fosters lung adenocarcinoma immune escape by modulating PD-L1 expression in tumor-associated macrophages via JAK/STAT3. Hum Vaccin Immunother, 2023, 19(3): 2269790.
|
9. |
Furuya N, Lu S, Okimoto T, et al. 1445 AIM2 modulates azacytidine-induced antitumor immunity in lung cancer. J Immunother Cancer, 2022, 10(Suppl 2): 1445.
|
10. |
Yu Q, Zhang M, Ying Q, et al. Decrease of AIM2 mediated by luteolin contributes to non-small cell lung cancer treatment. Cell Death Dis, 2019, 10(3): 218.
|
11. |
Sorrentino R, Terlizzi M, Di Crescenzo VG, et al. Human lung cancer-derived immunosuppressive plasmacytoid dendritic cells release IL-1α in an AIM2 inflammasome-dependent manner. Am J Pathol, 2015, 185(11): 3115-24.
|
12. |
Colarusso C, Terlizzi M, Lamort AS, et al. Caspase-11 and AIM2 inflammasome are involved in smoking-induced COPD and lung adenocarcinoma. Oncotarget. 2021, 12(11): 1057-1071.
|
13. |
De Falco G, Colarusso C, Terlizzi M, et al. Chronic Obstructive Pulmonary Disease-Derived Circulating Cells Release IL-18 and IL-33 under Ultrafine Particulate Matter Exposure in a Caspase-1/8-Independent Manner. Front Immunol, 2017, 8: 1415.
|
14. |
Colarusso C, Terlizzi M, Molino A, et al. AIM2 Inflammasome Activation Leads to IL-1α and TGF-β Release From Exacerbated Chronic Obstructive Pulmonary Disease-Derived Peripheral Blood Mononuclear Cells. Front Pharmacol, 2019, 10: 257.
|
15. |
Tran HB, Hamon R, Jersmann H, et al. AIM2 nuclear exit and inflammasome activation in chronic obstructive pulmonary disease and response to cigarette smoke. J Inflamm (Lond), 2021, 18(1): 19.
|
16. |
Ruwanpura SM, McLeod L, Dousha LF, et al. Cross-talk between IL-6 trans-signaling and AIM2 inflammasome/IL-1β axes bridge innate immunity and epithelial apoptosis to promote emphysema. Proc Natl Acad Sci USA, 2022, 119(36): e2201494119.
|
17. |
Yang S, Guo R, Meng X, et al. AIM2 participates in house dust mite (HDM)-induced epithelial dysfunctions and ovalbumin (OVA)-induced allergic asthma in infant mice. J Asthma, 2024, 61(5): 479-490.
|
18. |
Klune JR, Dhupar R, Cardinal J, et al. HMGB1: endogenous danger signaling. Mol Med, 2008, 14(7-8): 476-84.
|
19. |
Zhang H, Luo J, Alcorn JF, et al. AIM2 Inflammasome Is Critical for Influenza-Induced Lung Injury and Mortality. J Immunol, 2017, 198(11): 4383-4393.
|
20. |
Kang R, Chen R, Xie M, et al. The Receptor for Advanced Glycation End Products Activates the AIM2 Inflammasome in Acute Pancreatitis. J Immunol, 2016, 196(10): 4331-4337.
|
21. |
Ngoungoure FP, Owona BA. Withaferin A modulates AIM2 inflammasome and caspase-1 expression in THP-1 polarized macrophages. Exp Cell Res, 2019, 383(2): 111564.
|
22. |
Sun Q, Loughran P, Shapiro R, et al. Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice. Hepatology, 2017, 65(1): 253-268.
|
23. |
Yang C, Song C, Wang Y, et al. Re-Du-Ning injection ameliorates radiation-induced pneumonitis and fibrosis by inhibiting AIM2 inflammasome and epithelial-mesenchymal transition. Phytomedicine. 2022, 102: 154184.
|
24. |
Zhang Q, Hu Q, Chu Y, et al. The Influence of Radiotherapy on AIM2 Inflammasome in Radiation Pneumonitis. Inflammation. 2016, 39(5): 1827-34.
|
25. |
Cho SJ, Lee M, Stout-Delgado HW, et al. DROSHA-Dependent miRNA and AIM2 Inflammasome Activation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci, 2020, 21(5): 1668.
|
26. |
Gao L, Jiang Z, Han Y, et al. Regulation of Pyroptosis by ncRNA: A Novel Research Direction. Front Cell Dev Biol. 2022 Mar 28;10: 840576.
|
27. |
Zamani P, Oskuee RK, Atkin SL, et al. MicroRNAs as important regulators of the NLRP3 inflammasome. Prog Biophys Mol Biol, 2020, 150: 50-61.
|
28. |
Terlizzi M, Molino A, Colarusso C, et al. Activation of the absent in melanoma 2 inflammasome in peripheral blood mononuclear cells from idiopathic pulmonary fibrosis patients leads to the release of pro-fibrotic mediators. Frontiers in immunology, 2018, 9: 670.
|
29. |
Trachalaki A, Tsitoura E, Mastrodimou S, et al. Enhanced IL-1β Release Following NLRP3 and AIM2 Inflammasome Stimulation Is Linked to mtROS in Airway Macrophages in Pulmonary Fibrosis. Front Immunol, 2021, 12: 661811.
|
30. |
Yu H, Liu S, Wang S, et al. The involvement of HDAC3 in the pathogenesis of lung injury and pulmonary fibrosis. Front Immunol, 2024, 15: 1392145.
|
31. |
Zheng Q, Lei Y, Hui S, Tong M, Liang L. HDAC3 promotes pulmonary fibrosis by activating NOTCH1 and STAT1 signaling and up-regulating inflammasome components AIM2 and ASC. Cytokine, 2022, 153: 155842.
|