1. |
Koritala BSC, Lee YY, Gaspar LS, et al. Obstructive sleep apnea in a mouse model is associated with tissue-specific transcriptomic changes in circadian rhythmicity and mean 24-hour gene expression. Hattar S, ed. PLoS Biol, 2023, 21(5): e3002139.
|
2. |
Coimbra-Costa D, Alva N, Duran M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biol, 2017, 12: 216-225.
|
3. |
Polšek D, Bago M, Živaljić M, et al. A novel adjustable automated system for inducing chronic intermittent hypoxia in mice. Sakakibara M, ed. PLoS ONE, 2017, 12(3): e0174896.
|
4. |
Alle H, Roth A, Geiger JRP. Energy-efficient action potentials in hippocampal mossy fibers. Science, 2009, 325(5946): 1405-1408.
|
5. |
Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply. Neuron, 2012, 75(5): 762-777.
|
6. |
Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol, 2018, 15: 490-503.
|
7. |
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta, 2006, 1757(5-6): 509-517.
|
8. |
Schon EA, Przedborski S. Mitochondria: The Next (Neurode) Generation. Neuron, 2011, 70(6): 1033-1053.
|
9. |
彭万达, 陈锐, 蒋震, 等. 阻塞性睡眠呼吸暂停低通气综合征患者海马及脑白质病变与认知功能的相关性. 中华医学杂志, 2014, 94(10): 724-728.
|
10. |
Morrell M. Changes in brain morphology associated with obstructive sleep apnea. Sleep Med, 2003, 4(5): 451-454.
|
11. |
Gao H, Han Z, Huang S, et al. Intermittent hypoxia caused cognitive dysfunction relate to miRNAs dysregulation in hippocampus. Behav Brain Res, 2017, 335: 80-87.
|
12. |
Jing F, Qi W, Dan Z, et al. Hippocampal impairments are associated with intermittent hypoxia of obstructive sleep apnea. Chin Med J (Engl), 2012, 125(4): 696-701.
|
13. |
May A, Mehra R. Obstructive sleep apnea: role of intermittent hypoxia and inflammation. Semin Respir Crit Care Med, 2014, 35(05): 531-544.
|
14. |
Wall AM, Corcoran AE, O’Halloran KD, et al. Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiol Dis, 2014, 62: 8-17.
|
15. |
Chou YT, Zhan G, Zhu Y, et al. C/EBP homologous binding protein (CHOP) underlies neural injury in sleep apnea model. Sleep, 2013, 36(4): 481-492.
|
16. |
Ugale V, Deshmukh R, Lokwani D, et al. GluN2B subunit selective N-methyl-D-aspartate receptor ligands: democratizing recent progress to assist the development of novel neurotherapeutics. Mol Divers, 2023, 28(3): 1765-1792.
|
17. |
Arias-Cavieres A, Khuu MA, Nwakudu CU, et al. A HIF1a-dependent pro-oxidant state disrupts synaptic plasticity and impairs spatial memory in response to intermittent hypoxia. eNeuro, 2020, 7(3): ENEURO.0024-20.2020.
|
18. |
Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest, 2020, 130(10): 5042-5051.
|
19. |
Mironov SL. Complexity of mitochondrial dynamics in neurons and its control by ADP produced during synaptic activity. Int J Biochem Cell Biol, 2009, 41(10): 2005-2014.
|
20. |
Mnatsakanyan N, Jonas EA. The new role of F1Fo ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol, 2020, 332: 113400.
|
21. |
Douglas RM, Ryu J, Kanaan A, et al. Neuronal death during combined intermittent hypoxia/hypercapnia is due to mitochondrial dysfunction. Am J Physiol Cell Physiol, 2010, 298(6): C1594-C1602.
|
22. |
Erecińska M, Silver IA. Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol, 2001, 128(3): 263-276.
|
23. |
Liochev SI. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med, 2013, 60: 1-4.
|
24. |
Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem, 1976, 251(16): 5069-5077.
|
25. |
Kristián T. Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage. Cell Calcium, 2004, 36(3-4): 221-233.
|
26. |
Zhou L, Chen P, Peng Y, et al. Role of Oxidative stress in the neurocognitive dysfunction of obstructive sleep apnea syndrome. Oxid Med Cell Longev, 2016, 2016: 1-15.
|
27. |
Aoyama K, Watabe M, Nakaki T. Regulation of neuronal glutathione synthesis. J Pharmacol Sci, 2008, 108(3): 227-238.
|
28. |
Ling J, Yu Q, Li Y, et al. Edaravone improves intermittent hypoxia-induced cognitive impairment and hippocampal damage in rats. Biol Pharm Bull, 2020, 43(8): 1196-1201.
|