1. |
Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med, 2002, 21(16):2313-2324.
|
2. |
曾宪涛, 张超, 杜亮. 应用ADDIS软件实现网状Meta分析. 中国循证医学杂志, 2013, 13(12):1508-1515.
|
3. |
沈可, 王芬, 张超, 等. 网状Meta分析在JAGS软件中的实现. 数理医药学杂志, 2014, (4):446-450, 451.
|
4. |
张天嵩, 熊茜. 网络Meta分析在R软件中的实现. 循证医学, 2012, 12(3):185-188.
|
5. |
R Development Core Team. R:a language and environment for statistical computing. Vienna:R Foundation for Statistical Computing. Available at:http://www.R-project.org.
|
6. |
van Valkenhoef G, Kuiper J. gemtc:Network Meta-Analysis Using Bayesian Methods. R package version 0.6-1. Available at:http://CRAN.R-project.org/package=gemtc.
|
7. |
张超, 董圣杰, 曾宪涛. R软件gemtc程序包在网状Meta分析中的应用. 中国循证医学杂志, 2013, 13(10):1258-1264.
|
8. |
Brooks SP, Roberts GO. Assessing convergence of Markov chain Monte Carlo algorithms. Stat Comput, 1998, 8(4):319-335.
|
9. |
Toft N, Innocent GT, Gettinby G, et al. Assessing the convergence of Markov Chain Monte Carlo methods:an example from evaluation of diagnostic tests in absence of a gold standard. Prev Vet Med, 2007, 79(2):244-256.
|
10. |
Roberts GO, Rosenthal JS. Examples of adaptive MCMC. J Comput Graph Stat, 2009, 18(2):349-367.
|
11. |
Inc, SAS Institute. SAS/STAT® 9.2 User's Guide, Second Edition[EB/OL]. 2009.
|
12. |
Crosbie S, Corliss D. Are You Dense? Using Kernel Density Estimation (KDE) to Connect the Dots Amidst Uncertainty. 2012.
|
13. |
Jones MC, Daly F. Density probability plots. Commun Stat-Simul C, 1995, 24(4):911-927.
|
14. |
Turlach BA. Bandwidth selection in kernel density estimation:A review. Université catholique de Louvain, 1993.
|
15. |
Jones MC, Marron JS, Sheather SJ. A brief survey of bandwidth selection for density estimation. J Am Stat Assoc, 1996, 91(433):401-407.
|
16. |
Cox NJ. Speaking Stata:Density probability plots. Stata Journal, 2005, 5(2):259-273.
|
17. |
Valkenhoef G, Lu G, Brock B, et al. Automating network meta-analysis. Research Synthesis Methods, 2012, 3(4):285-299.
|
18. |
Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat, 1998, 7(4):434-455.
|
19. |
Tunaru R. Hierarchical Bayesian models for multiple count data. Austrian Journal of statistics, 2002, 31(3):221-229.
|
20. |
Woods BS, Hawkins N, Scott DA. Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials:a tutorial. BMC Med Res Methodol, 2010, 10:54.
|
21. |
Chaimani A, Higgins JP, Mavridis D, et al. Graphical tools for network meta-analysis in STATA. PloS one, 2013, 8(10):e76654.
|
22. |
Dias S, Sutton AJ, Ades AE, et al. Evidence synthesis for decision making 2:a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making, 2013, 33(5):607-617.
|
23. |
Salanti G, Ades AE, Ioannidis J. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis:an overview and tutorial. J Clin Epidemiol, 2011, 64(2):163-171.
|
24. |
Cope S, Jansen JP. Quantitative summaries of treatment effect estimates obtained with network meta-analysis of survival curves to inform decision-making. BMC Med Res Methodol, 2013, 13:147.
|
25. |
Salanti G, Dias S, Welton NJ, et al. Evaluating novel agent effects in multiple‐treatments meta-regression. Stat Med, 2010, 29(23):2369-2383.
|
26. |
Fruchterman TM, Reingold EM. Graph drawing by force-directed placement. Software:Practice and experience, 1991, 21(11):1129-1164.
|
27. |
张超, 徐畅, 曾宪涛. 网状Meta分析中网状关系图的绘制. 中国循证医学杂志, 2013, 13(11):1382-1386.
|
28. |
Jansen JP, Trikalinos T, Cappelleri JC, et al. Indirect treatment comparison/network meta-analysis study questionnaire to assess relevance and credibility to inform health care decision making:an ISPOR-AMCP-NPC Good Practice Task Force report. Value Health, 2014, 17(2):157-173.
|