1. |
Theuretzbacher U. Global antimicrobial resistance in gram-negative pathogens and clinical need. Curr Opin Microbiol, 2017, 39: 106-112.
|
2. |
Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob, 2017, 16(1): 18.
|
3. |
Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev, 1988, 11(4): 589-603.
|
4. |
胡付品, 郭燕, 朱德妹, 等. 2017 年 CHINET 中国细菌耐药性监测. 中国感染与化疗杂志, 2018, 18(3): 241-251.
|
5. |
Zhang Z. Univariate description and bivariate statistical inference: the first step delving into data. Ann Transl Med, 2016, 4(5): 91.
|
6. |
Mulroney KT, Hall JM, Huang X, et al. Author correction: rapid susceptibility profiling of carbapenem-resistant Klebsiella pneumoniae. Sci Rep, 2018, 8(1): 6697.
|
7. |
胡志军, 潘晓龙, 周东升, 等. 肺炎克雷伯菌感染的临床分布及耐药性监测. 中华医院感染学杂志, 2014, 24(12): 2865-2867.
|
8. |
Cristina ML, Alicino C, Sartini M, et al. Epidemiology, management, and outcome of c arbapenem-resistant Klebsiella pneumoniae bloodstream infections in hospitals within the same endemic metropolitan area. J Infect Public Health, 2018, 11(2): 171-177.
|
9. |
Patel PK, Russo TA, Karchmer AW. Hypervirulent Klebsiella pneumoniae. Open Forum Infect Dis, 2014, 1(1): u28.
|
10. |
Adams-Sapper S, Gayoso A, Riley LW. Stress-adaptive responses associated with high-level carbapenem resistance in KPC-producing Klebsiella pneumoniae. J Pathog, 2018, 2018: 3028290.
|
11. |
Gharbi M, Moore S, Gilchrist M, et al. Forecasting carbapenem resistance from antimicrobial consumption surveillance: lessons learnt from an OXA-48-producing Klebsiella pneumoniae outbreak in a West London renal unit. Int J Antimicrob Agents, 2015, 46(2): 150-156.
|
12. |
Tzouvelekis LS, Markogiannakis A, Piperaki E, et al. Treating infections caused by carbapenemase-producing enterobacteriaceae. Clin Microbiol Infect, 2014, 20(9): 862-872.
|
13. |
Jayol A, Nordmann P, Poirel L, et al. Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother, 2018, 73(2): 542-544.
|
14. |
Lee YR, Baker NT. Meropenem-vaborbactam: a carbapenem and beta-lactamase inhibitor with activity against carbapenem-resistant Enterobacteriaceae. Eur J Clin Microbiol Infect Dis, 2018, 37(8): 1411-1419.
|
15. |
Van Duin D, Lok JJ, Earley M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant enterobacteriaceae. Clin Infect Dis, 2018, 66(2): 163-171.
|
16. |
Harris PN, Tambyah PA, Paterson DL. β2-lactam and β2-lactamase inhibitor combinations in the treatment of extended-spectrum β2-lactamase producing enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis, 2015, 15(4): 475-485.
|
17. |
Band VI, Satola SW, Burd EM, et al. Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection. MBio, 2018, 9(2): e02448-2517.
|
18. |
Pascale GD, Montini L, Pennisi MA, et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Critical Care, 2014, 18(3): 1-9.
|
19. |
Pletzer D, Coleman SR, Hancock RE. Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol, 2016, 33: 35-40.
|
20. |
WHO. Guidelines for the prevention and control of carbapenem-resistant enterobacteriaceae, acinetobacter baumannii and pseudomonas aeruginosa in health care facilities. Available at: http://apps.who.int/iris/bitstream/handle/10665/259462/9789241550178-eng.pdf;sequence=1.
|