1. |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin, 2015, 65(2): 87-108.
|
2. |
曹志, 张国辉, 朱立夏, 等. 肌层浸润性膀胱癌保留膀胱的治疗现状. 癌症进展, 2016, 14(2): 94-97.
|
3. |
张薇, 项永兵, 邵常霞, 等. 吸烟和环境烟草烟雾暴露与膀胱癌关系的病例对照研究. 肿瘤, 2006, 26(1): 42-47.
|
4. |
Burger M, Catto JW, Dalbagni G, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol, 2013, 63(2): 234-241.
|
5. |
Freedman ND, Silverman DT, Hollenbeck AR, et al. Association between smoking and risk of bladder cancer among men and women. JAMA, 2011, 306(7): 737-745.
|
6. |
Thoma F, Koller T, Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol, 1979, 83(2 Pt 1): 403-427.
|
7. |
Hansen JC. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct, 2002, 31: 361-392.
|
8. |
Brown DT. Histone H1 and the dynamic regulation of chromatin function. Biochem Cell Biol, 2003, 81(3): 221-227.
|
9. |
Bustin M, Catez F, Lim JH. The dynamics of histone H1 function in chromatin. Mol Cell, 2005, 17(5): 617-620.
|
10. |
Happel N, Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene, 2009, 431(1-2): 1-12.
|
11. |
Sato S, Takahashi S, Asamoto M, et al. Histone H1 expression in human prostate cancer tissues and cell lines. Pathol Int, 2012, 62(2): 84-92.
|
12. |
Hechtman JF, Beasley MB, Kinoshita Y, et al. Promyelocytic leukemia zinc finger and histone H1.5 differentially stain low- and high-grade pulmonary neuroendocrine tumors: a pilot immunohistochemical study. Hum Pathol, 2013, 44(7): 1400-1405.
|
13. |
Kostova NN, Srebreva LN, Milev AD, et al. Immunohistochemical demonstration of histone H1(0) in human breast carcinoma. Histochem Cell Biol, 2005, 124(5): 435-443.
|
14. |
Momeni M, Kalir T, Farag S, et al. Immunohistochemical detection of promyelocytic leukemia zinc finger and histone 1.5 in uterine leiomyosarcoma and leiomyoma. Reprod Sci, 2014, 21(9): 1171-1176.
|
15. |
Momeni M, Kalir T, Farag S, et al. Expression of H1.5 and PLZF in granulosa cell tumors and normal ovarian tissues: a short report. Cell Oncol (Dordr), 2014, 37(3): 229-234.
|
16. |
Simpson RT. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry, 1978, 17(25): 5524-5531.
|
17. |
Terme JM, Sesé B, Millán-Ariño L, et al. Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J Biol Chem, 2011, 286(41): 35347-35357.
|
18. |
Westerman BA, Neijenhuis S, Poutsma A, et al. Quantitative reverse transcription-polymerase chain reaction measurement of HASH1(ASCL1), a marker for small cell lung carcinomas with neuroendocrine features. Clin Cancer Res, 2002, 8(4): 1082-1086.
|
19. |
Zlatanova J, Caiafa P, Van Holde K. Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J, 2000, 14(12): 1697-1704.
|
20. |
Catez F, Ueda T, Bustin M. Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol, 2006, 13(4): 305-310.
|
21. |
Alexandrow MG, Hamlin JL. Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J Cell Biol, 2005, 168(6): 875-886.
|
22. |
Maresca TJ, Freedman BS, Heald R. Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts. J Cell Biol, 2005, 169(6): 859-869.
|
23. |
Chadee DN, Taylor WR, Hurta RA, et al. Increased phosphorylation of histone H1 in mouse fibroblasts transformed with oncogenes or constitutively active mitogen-activated protein kinase kinase. J Biol Chem, 1995, 270(34): 20098-20105.
|
24. |
Taylor WR, Chadee DN, Allis CD, et al. Fibroblasts transformed by combinations of ras, myc and mutant p53 exhibit increased phosphorylation of histone H1 that is independent of metastatic potential. FEBS Lett, 1995, 377(1): 51-53.
|
25. |
Fan Y, Nikitina T, Zhao J, et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell, 2005, 123(7): 1199-1212.
|
26. |
Costes SV, Ponomarev A, Chen JL, et al. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains. PLoS Comput Biol, 2007, 3(8): e155.
|
27. |
Elia MC, Bradley MO. Influence of chromatin structure on the induction of DNA double strand breaks by ionizing radiation. Cancer Res, 1992, 52(6): 1580-1586.
|
28. |
Rosidi B, Wang M, Wu W, et al. Histone H1 functions as a stimulatory factor in backup pathways of NHEJ. Nucleic Acids Res, 2008, 36(5): 1610-1623.
|
29. |
Izzo A, Kamieniarz K, Schneider R. The histone H1 family: specific members, specific functions? Biol Chem, 2008, 389(4): 333-343.
|
30. |
Hizume K, Yoshimura SH, Takeyasu K. Linker histone H1 per se can induce three-dimensional folding of chromatin fiber. Biochemistry, 2005, 44(39): 12978-12989.
|
31. |
Thomas JO. The higher order structure of chromatin and histone H1. J Cell Sci Suppl, 1984, 1: 1-20.
|
32. |
Tamayo J, Miles M. Human chromosome structure studied by scanning force microscopy after an enzymatic digestion of the covering cell material. Ultramicroscopy, 2000, 82(1-4): 245-251.
|
33. |
Yoshimura SH, Kim J, Takeyasu K. On-substrate lysis treatment combined with scanning probe microscopy revealed chromosome structures in eukaryotes and prokaryotes. J Electron Microsc (Tokyo), 2003, 52(4): 415-423.
|
34. |
Allen MJ, Lee C, Lee JD 4th, et al. Atomic force microscopy of mammalian sperm chromatin. Chromosoma, 1993, 102(9): 623-630.
|
35. |
Belmont AS, Sedat JW, Agard DA. A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J Cell Biol, 1987, 105(1): 77-92.
|
36. |
Adolph KW, Kreisman LR, Kuehn RL. Assembly of chromatin fibers into metaphase chromosomes analyzed by transmission electron microscopy and scanning electron microscopy. Biophys J, 1986, 49(1): 221-231.
|