1. |
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70(1): 41-55.
|
2. |
Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med, 2007, 26(16): 3078-3094.
|
3. |
Austin PC. The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies. Stat Med, 2010, 29(20): 2137-2148.
|
4. |
Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med, 2008, 27(12): 2037-2049.
|
5. |
王永吉, 蔡宏伟, 夏结来, 等. 倾向指数第一讲倾向指数的基本概念和研究步骤. 中华流行病学杂志, 2010, 31(3): 347-348.
|
6. |
Abdia Y, Kulasekera KB, Datta S, <italic>et al</italic>. Propensity scores based methods for estimating average treatment effect and average treatment effect among treated: A comparative study. Biom J, 2017, 59(5): 967-985.
|
7. |
Pham CT, Gibb CL, Mittinty MN, <italic>et al</italic>. A comparison of propensity score-based approaches to health service evaluation: a case study of a preoperative physician-led clinic for high-risk surgical patients. J Eval Clin Pract, 2016, 22(5): 761-770.
|
8. |
Wu M, Zhao Y, Wang R, <italic>et al</italic>. Epidemiology of Functional abdominal bloating and its impact on health related quality of life: male-female stratified propensity score analysis in a population based survey in mainland China. PLoS One, 2014, 9(7): e102320.
|
9. |
Kim CY, Collier CD, Liu RW, <italic>et al</italic>. Are limb-sparing surgical resections comparable to amputation for patients with pelvic chondrosarcoma? A case-control, propensity score-matched analysis of the national cancer database. Clin Orthop Relat Res, 2019, 477(3): 596-605.
|
10. |
Spertus JV, Normand ST. Bayesian propensity scores for high-dimensional causal inference: a comparison of drug-eluting to bare-metal coronary stents. Biom J, 2018, 60(4): 721-733.
|
11. |
Brookhart MA, Schneeweiss S, Rothman KJ, <italic>et al</italic>. Variable selection for propensity score models. Am J Epidemiol, 2006, 163(12): 1149-1156.
|
12. |
Westreich D, Lessler J, Funk MJ. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol, 2010, 63(8): 826-833.
|
13. |
Thoemmes FJ, Kim ES. A systematic review of propensity score methods in the social sciences. Multivariate Behav Res, 2011, 46(1): 90-118.
|
14. |
Weitzen S, Lapane KL, Toledano AY, <italic>et al</italic>. Principles for modeling propensity scores in medical research: a systematic literature review. Pharmacoepidemiol Drug Saf, 2004, 13(12): 841-853.
|
15. |
吴美京, 吴骋, 王睿, 等. 倾向性评分法中评分值的估计方法及比较. 中国卫生统计, 2013, 30(3): 440-444.
|
16. |
Ellis AR, Dusetzina SB, Hansen RA, <italic>et al</italic>. Confounding control in a non-experimental study of STAR*D data: logistic regression balanced covariates better than boosted CART. Ann Epidemiol, 2013, 23(4): 204-209.
|
17. |
Wyss R, Schneeweiss S, van der Laan M, <italic>et al</italic>. Using super learner prediction modeling to improve high-dimensional propensity score estimation. Epidemiology, 2018, 29(1): 96-106.
|
18. |
McCaffrey DF, Griffin BA, Almirall D, <italic>et al</italic>. A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat Med, 2013, 32(19): 3388-3414.
|
19. |
McCandless LC, Gustafson P, Austin PC. Bayesian propensity score analysis for observational data. Stat Med, 2009, 28(1): 94-112.
|
20. |
Linden A, Yarnold PR. Using classification tree analysis to generate propensity score weights. J Eval Clin Pract, 2017, 23(4): 703-712.
|
21. |
McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods, 2004, 9(4): 403-425.
|
22. |
Pirracchio R, Petersen ML, van der Laan M. Improving propensity score estimators' robustness to model misspecification using super learner. Am J Epidemiol, 2015, 181(2): 108-119.
|
23. |
Setoguchi S, Schneeweiss S, Brookhart MA, <italic>et al</italic>. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiol Drug Saf, 2008, 17(6): 546-555.
|
24. |
Leacy FP, Stuart EA. On the joint use of propensity and prognostic scores in estimation of the average treatment effect on the treated: a simulation study. Stat Med, 2014, 33(20): 3488-3508.
|
25. |
Wyss R, Ellis AR, Brookhart MA, <italic>et al</italic>. The role of prediction modeling in propensity score estimation: an evaluation of logistic regression, bCART, and the covariate-balancing propensity score. Am J Epidemiol, 2014, 180(6): 645-655.
|
26. |
杨文姣,肖俊玲,丁国武. ARIMA模型和BP神经网络模型在甘肃省结核病发病率预测中的应用. 中华疾病控制杂志, 2019, 23(6): 728-732.
|
27. |
王雅文, 沈忠周, 严宝湖, 等. ARIMA模型和ARIMA-GRNN模型在AIDS发病预测中的应用. 中华疾病控制杂志, 2018, 22(12): 1287-1290.
|
28. |
潘丹, 贾龙飞, 曾安, 等. 生成式对抗网络在医学图像处理中的应用. 生物医学工程学杂志, 2018, 35(6): 970-976.
|
29. |
梁蒙蒙, 周涛, 张飞飞, 等. 卷积神经网络及其在医学图像分析中的应用研究. 生物医学工程学杂志, 2018, 35(6): 977-985.
|
30. |
左东奇, 韩霖, 陈科, 等. 基于卷积神经网络提取超声图像甲状腺结节钙化点的研究. 生物医学工程学杂志, 2018, 35(5): 679-687.
|
31. |
Feng P, Zhou XH, Zou QM, <italic>et al</italic>. Generalized propensity score for estimating the average treatment effect of multiple treatments. Stat Med, 2012, 31(7): 681-697.
|
32. |
Ray WA, Murray KT, Hall K, <italic>et al</italic>. Azithromycin and the risk of cardiovascular death. N Engl J Med, 2012, 366(20): 1881-1890.
|
33. |
Meghea CI, Raffo JE, Zhu Q, <italic>et al</italic>. Medicaid home visitation and maternal and infant healthcare ultilization. Am J Prev Med, 2013, 56(4): 441-447.
|
34. |
Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Stat Med, 2010, 29(3): 337-346.
|
35. |
Tsiatis AA, Davidian M. Comment: Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci, 2007, 22(4): 569-573.
|
36. |
Wyss R, Ellis AR, Lunt M, <italic>et al</italic>. Model misspecification when excluding instrumental variables from PS models in settings where instruments modify the effects of covariates on treatment. Epidemiol Methods, 2014, 3(1): 83-96.
|
37. |
周洁, 张晟, 何书, 等. 使用R和Stata软件实现倾向性评分匹配. 中国卫生统计, 2018, 35(4): 628-632+636.
|
38. |
Lefebvre G, Delaney JA, Platt RW. Impact of mis-specification of the treatment model on estimates from a marginal structural model. Stat Med, 2008, 27(18): 3629-3642.
|