1. |
范美玉, 陈敏. 基于大数据的精准医疗服务体系研究. 中国医院管理, 2016, 36(1): 10-11.
|
2. |
谷鸿秋, 周支瑞, 章仲恒, 等. 临床预测模型: 基本概念, 应用场景及研究思路. 中国循证心血管医学杂志, 2018, 10(12): 1454-1456+1462.
|
3. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594.
|
4. |
Moons KG, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med, 2015, 162(1): W1-W73.
|
5. |
van Walraven C, Jackson TD, Daneman N. Derivation and validation of the surgical site infections risk model using health administrative data. Infect Control Hosp Epidemiol, 2016, 37(4): 455-465.
|
6. |
Imaizumi T, Nakatochi M, Akiyama S, et al. Urinary podocalyxin as a biomarker to diagnose membranous nephropathy. PLoS One, 2016, 11(9): e0163507.
|
7. |
Eom BW, Ryu KW, Nam BH, et al. Survival nomogram for curatively resected Korean gastric cancer patients: multicenter retrospective analysis with external validation. PLoS One, 2015, 10(2): e0119671.
|
8. |
Greving JP, Wermer MJ, Brown RD Jr, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol, 2014, 13(1): 59-66.
|
9. |
Debray TP, Vergouwe Y, Koffijberg H, et al. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol, 2015, 68(3): 279-289.
|
10. |
Schuit E, Groenwold RH, Harrell FE Jr, et al. Unexpected predictor-outcome associations in clinical prediction research: causes and solutions. CMAJ, 2013, 185(10): E499-E505.
|
11. |
Reese SM, Knepper B, Young HL, et al. Development of a surgical site infection prediction model in orthopaedic trauma: The Denver Health Model. Injury, 2017, 48(12): 2699-2704.
|
12. |
Wong J, Taljaard M, Forster AJ, et al. Addition of time-dependent covariates to a survival model significantly improved predictions for daily risk of hospital death. J Eval Clin Pract, 2013, 19(2): 351-357.
|
13. |
Lubetzky-Vilnai A, Ciol M, McCoy SW. Statistical analysis of clinical prediction rules for rehabilitation interventions: current state of the literature. Arch Phys Med Rehabil, 2014, 95(1): 188-196.
|
14. |
Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J, 2014, 35(29): 1925-1931.
|
15. |
Meffert PJ, Baumeister SE, Lerch MM, et al. Development, external validation, and comparative assessment of a new diagnostic score for hepatic steatosis. Am J Gastroenterol, 2014, 109(9): 1404-1414.
|
16. |
Järvinen TL, Jokihaara J, Guy P, et al. Conflicts at the heart of the FRAX tool. CMAJ, 2014, 186(3): 165-167.
|
17. |
Binder H, Sauerbrei W, Royston P. Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response. Stat Med, 2013, 32(13): 2262-2277.
|
18. |
Nijman RG, Vergouwe Y, Thompson M, et al. Clinical prediction model to aid emergency doctors managing febrile children at risk of serious bacterial infections: diagnostic study. BMJ, 2013, 346: f1706.
|
19. |
Siontis GC, Tzoulaki I, Castaldi PJ, et al. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J Clin Epidemiol, 2015, 68(1): 25-34.
|