1. |
Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-World Evidence-What is it and what can it tell us? N Engl J Med, 2016, 375(23): 2293-2297.
|
2. |
Sun X, Tan J, Tang L, et al. Real world evidence: experience and lessons from China. BMJ, 2018, 360: j5262.
|
3. |
温泽淮, 李玲, 刘艳梅, 等. 实效性随机对照试验的技术规范. 中国循证医学杂志, 2019, 19(7): 794-802.
|
4. |
Zuidgeest MGP, Goetz I, Groenwold RHH, et al. Series: Pragmatic trials and real world evidence: Paper 1. Introduction. J Clin Epidemiol, 2017, 88: 7-13.
|
5. |
Gamerman V, Cai T, Elsässer A. Pragmatic randomized clinical trials: best practices and statistical guidance. Health Serv Outcomes Res Methodol, 2019, 19(1): 23-35.
|
6. |
Hernán MA, Hernández-Díaz S, Robins JM. Randomized trials analyzed as observational studies. Ann Intern Med, 2013, 159(8): 560-562.
|
7. |
Montori VM, Guyatt GH. Intention-to-treat principle. CMAJ, 2001, 165(10): 1339-1341.
|
8. |
Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc, 1996, 91(434): 444-455.
|
9. |
Hernán MA, Robins JM. Per-protocol analyses of pragmatic trials. N Engl J Med, 2017, 377(14): 1391-1398.
|
10. |
Hernán MA, Hernández-Díaz S. Beyond the intention-to-treat in comparative effectiveness research. Clin Trials, 2012, 9(1): 48-55.
|
11. |
Liao JM, Stack CB, Griswold ME, et al. Annals understanding clinical research: intention-to-treat analysis. Ann Intern Med, 2017, 166(9): 662-664.
|
12. |
Shrier I, Verhagen E, Stovitz SD. The intention-to-treat analysis is not always the conservative approach. Am J Med, 2017, 130(7): 867-871.
|
13. |
Hernán MA, Scharfstein D. Cautions as regulators move to end exclusive reliance on intention to treat. Ann Intern Med, 2018, 168(7): 515-516.
|
14. |
Murray EJ, Caniglia EC, Swanson SA, et al. Patients and investigators prefer measures of absolute risk in subgroups for pragmatic randomized trials. J Clin Epidemiol, 2018, 103: 10-21.
|
15. |
Mansournia MA, Higgins JP, Sterne JA, et al. Biases in randomized trials: a conversation between trialists and epidemiologists. Epidemiology, 2017, 28(1): 54-59.
|
16. |
Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology, 2004, 15(5): 615-625.
|
17. |
Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol, 2000, 29(4): 722-729.
|
18. |
Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist's dream? Epidemiology, 2006, 17(4): 360-372.
|
19. |
Wang L, Tchetgen Tchetgen E. Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables. J R Stat Soc Series B Stat Methodol, 2018, 80(3): 531-550.
|
20. |
Swanson SA, Hernán MA. Commentary: how to report instrumental variable analyses (suggestions welcome). Epidemiology, 2013, 24(3): 370-374.
|
21. |
Vansteelandt S, Goetghebeur E. Causal inference with generalized structural mean models. J R Stat Soc Series B Stat Methodol, 2003, 65(4): 817-835.
|
22. |
Baiocchi M, Cheng J, Small DS. Instrumental variable methods for causal inference. Stat Med, 2014, 33(13): 2297-2340.
|
23. |
Robins J. A new approach to causal inference in mortality studies with a sustained exposure periodapplication to control of the healthy worker survivor effect. Math Model, 1986, 7(9): 1393-1512.
|
24. |
Robins JM. Causal inference from complex longitudinal data. Berkane M, ed. Latent variable modeling and applications to causality. New York: Springer, 1997: 69-117.
|
25. |
Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology, 2003, 14(3): 300-306.
|
26. |
Naimi AI, Cole SR, Kennedy EH. An introduction to g methods. Int J Epidemiol, 2017, 46(2): 756-762.
|
27. |
Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology, 2000, 11(5): 550-560.
|