1. |
江泽飞, 邵志敏, 徐兵河. 人表皮生长因子受体 2 阳性乳腺癌临床诊疗专家共识 2016. 中华医学杂志, 2016, 96(14): 1091-1096.
|
2. |
薛珂, 李卓琳, 李振辉, 等. 多参数 MRI 影像组学特征识别 HER-2 过表达型乳腺癌. 放射学实践, 2020, 35(2): 186-189.
|
3. |
梁翠珊, 崔运能, 杨伟超, 等. 基于 T2WI 影像组学标签预测乳腺癌人表皮生长因子受体 2 表达状态. 中国医学影像技术, 2019, 35(4): 555-559.
|
4. |
吴佩琪, 赵可, 吴磊, 等. 基于扩散加权成像和动态增强 MRI 的影像组学特征与乳腺癌分子分型的关系初探. 中华放射学杂志, 2018, 52(5): 338-343.
|
5. |
Crowe JP, Patrick RJ, Rybicki LA, et al. A data model to predict HER2 status in breast cancer based on the clinical and pathologic profiles of a large patient population at a single institution. Breast, 2006, 15(6): 728-735.
|
6. |
Grimm LJ, Zhang J, Mazurowski MA. Computational approach to radiogenomics of breast cancer: Luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms. J Magn Reson Imaging, 2015, 42(4): 902-907.
|
7. |
Li H, Zhu Y, Burnside ES, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer, 2016, 2: 16012.
|
8. |
Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol, 2016, 34(18): 2157-2164.
|
9. |
Cui H, Zhang D, Peng F, et al. Identifying ultrasound features of positive expression of Ki67 and P53 in breast cancer using radiomics. Asia Pac J Clin Oncol, 2020, doi:10.1111/ajco.13397.
|
10. |
Tran WT, Jerzak K, Lu FI, et al. Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics. J Med Imaging Radiat Sci, 2019, 50(4 Suppl 2): S32-S41.
|
11. |
Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics, 2019, 9(5): 1303-1322.
|
12. |
Liu Z, Li Z, Qu J, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study. Clin Cancer Res, 2019, 25(12): 3538-3547.
|
13. |
Liang M, Cai Z, Zhang H, et al. Machine learning-based analysis of rectal cancer mri radiomics for prediction of metachronous liver metastasis. Acad Radiol, 2019, 26(11): 1495-1504.
|
14. |
Kim S, Shin J, Kim DY, et al. Radiomics on gadoxetic acid-enhanced magnetic resonance imaging for prediction of postoperative early and late recurrence of single hepatocellular carcinoma. Clin Cancer Res, 2019, 25(13): 3847-3855.
|
15. |
Ji GW, Zhang YD, Zhang H, et al. Biliary tract cancer at CT: a radiomics-based model to predict lymph node metastasis and survival outcomes. Radiology, 2019, 290(1): 90-98.
|
16. |
Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun, 2020, 11(1): 1236.
|
17. |
Gao Y, Luo Y, Zhao C, et al. Nomogram based on radiomics analysis of primary breast cancer ultrasound images: prediction of axillary lymph node tumor burden in patients. Eur Radiol, 2021, 31(2): 928-937.
|
18. |
DiCenzo D, Quiaoit K, Fatima K, et al. Quantitative ultrasound radiomics in predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer: results from multi-institutional study. Cancer Med, 2020, 9(16): 5798-5806.
|
19. |
Moustafa AF, Cary TW, Sultan LR, et al. Color doppler ultrasound improves machine learning diagnosis of breast cancer. Diagnostics (Basel), 2020, 10(9): 631.
|
20. |
Qiu X, Jiang Y, Zhao Q, et al. Could ultrasound-based radiomics noninvasively predict axillary lymph node metastasis in breast cancer? J Ultrasound Med, 2020, 39(10): 1897-1905.
|
21. |
Quiaoit K, DiCenzo D, Fatima K, et al. Quantitative ultrasound radiomics for therapy response monitoring in patients with locally advanced breast cancer: multi-institutional study results. PLoS One, 2020, 15(7): e0236182.
|
22. |
Sim Y, Lee SE, Kim EK, et al. A radiomics approach for the classification of fibroepithelial lesions on breast ultrasonography. Ultrasound Med Biol, 2020, 46(5): 1133-1141.
|
23. |
Sun Q, Lin X, Zhao Y, et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region. Front Oncol, 2020, 10: 53.
|
24. |
邱小英, 蒋天安. 基于超声的影像组学特征能否无创地预测乳腺癌中 HER2 的状态? 北京: 中国超声医学工程学会第五届全国介入超声医学学术交流大会, 2019: 1.
|
25. |
Fan M, Li H, Wang S, et al. Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer. PLoS One, 2017, 12(2): e0171683.
|