1. |
Rakyan VK, Down TA, Balding DJ, et al. Epigenome-wide association studies for common human diseases. Nat Rev Genet, 2011, 12(8): 529-541.
|
2. |
Kulis M, Queirós AC, Beekman R, et al. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta, 2013, 1829(11): 1161-1174.
|
3. |
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev, 2002, 16(1): 6-21.
|
4. |
Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol, 2005, 2 Suppl 1: S4-11.
|
5. |
Gomez JL. Epigenetics in asthma. Curr Allergy Asthma Rep, 2019, 19(12): 56.
|
6. |
Meissner A, Gnirke A, Bell GW, et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res, 2005, 33(18): 5868-5877.
|
7. |
Bibikova M, Lin Z, Zhou L, et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res, 2006, 16(3): 383-393.
|
8. |
Saadati M, Benner A. Statistical challenges of high-dimensional methylation data. Stat Med, 2014, 33(30): 5347-5357.
|
9. |
Chen YA, Lemire M, Choufani S, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics, 2013, 8(2): 203-209.
|
10. |
Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics, 2014, 30(10): 1363-1369.
|
11. |
Teschendorff AE, Marabita F, Lechner M, et al. A beta-mixture quantile normalization method for correcting probe design bias in illumina infinium 450 k DNA methylation data. Bioinformatics, 2013, 29(2): 189-196.
|
12. |
Price EM, Robinson WP. Adjusting for batch effects in DNA methylation microarray data, a lesson learned. Front Genet, 2018, 9: 83.
|
13. |
Bose M, Wu C, Pankow JS, et al. Evaluation of microarray-based DNA methylation measurement using technical replicates: the Atherosclerosis Risk In Communities (ARIC) Study. BMC Bioinformatics, 2014, 15(1): 312.
|
14. |
Chen J, Just AC, Schwartz J, et al. CpGFilter: model-based CpG probe filtering with replicates for epigenome-wide association studies. Bioinformatics, 2016, 32(3): 469-471.
|
15. |
Estivill XJ. Human molecular genetics (3rd edition). Garland Sci, 2005, 117(5): 509.
|
16. |
Wang S. Method to detect differentially methylated loci with case-control designs using Illumina arrays. Genet Epidemiol, 2011, 35(7): 686-694.
|
17. |
Yip WK, Fier H, DeMeo DL, et al. A novel method for detecting association between DNA methylation and diseases using spatial information. Genet Epidemiol, 2014, 38(8): 714-721.
|
18. |
Teng M, Wang Y, Kim S, et al. Empirical bayes model comparisons for differential methylation analysis. Comp Funct Genomics, 2012, 2012: 376706.
|
19. |
Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res, 2014, 42(8): e69.
|
20. |
张秋伊. 表观遗传关联研究中基于 CpG 集的五种统计分析方法比较. 南京: 南京医科大学, 2016.
|
21. |
Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet, 2011, 89(1): 82-93.
|
22. |
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 2013, 14: 7.
|
23. |
Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269): 108-112.
|
24. |
Sun H, Wang S. Penalized logistic regression for high-dimensional DNA methylation data with case-control studies. Bioinformatics, 2012, 28(10): 1368-1375.
|
25. |
Li C, Li H. Variable selection and regression analysis for graph-structured covariates with an application to genomics. Ann Appl Stat, 2010, 4(3): 1498-1516.
|
26. |
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Statist Soc B, 2005, 67(2): 301-320.
|
27. |
Chen X, Wang L, Smith JD, et al. Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes. Bioinformatics, 2008, 24(21): 2474-2481.
|
28. |
Gao Q, He Y, Yuan Z, et al. Gene- or region-based association study via kernel principal component analysis. BMC Genet, 2011, 12: 75.
|
29. |
Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32.
|
30. |
张秋伊, 赵杨, 魏永越, 等. 高维 DNA 甲基化数据的随机森林降维分析. 中华疾病控制杂志, 2016, 20(6): 630-633.
|
31. |
Wei Y, Liang J, Zhang R, et al. Epigenetic modifications in KDM lysine demethylases associate with survival of early-stage NSCLC. Clin Epigenetics, 2018, 10: 41.
|
32. |
Zhang R, Chen C, Dong X, et al. Independent validation of early-stage non-small cell lung cancer prognostic scores incorporating epigenetic and transcriptional biomarkers with gene-gene interactions and main effects. Chest, 2020, 158(2): 808-819.
|
33. |
Ng SW, Mitchell A, Kennedy JA, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature, 2016, 540(7633): 433-437.
|
34. |
Zhang HH, Ahn J, Lin X, et al. Gene selection using support vector machines with non-convex penalty. Bioinformatics, 2006, 22(1): 88-95.
|
35. |
Cutler DR, Edwards TC, Beard KH, et al. Random forests for classification in ecology. Ecology, 2007, 88(11): 2783-2792.
|
36. |
Zhang Z. Naïve Bayes classification in R. Ann Transl Med, 2016, 4(12): 241.
|
37. |
Rahman MS, Ambler G, Choodari-Oskooei B, et al. Review and evaluation of performance measures for survival prediction models in external validation settings. BMC Med Res Methodol, 2017, 17(1): 60.
|
38. |
Royston P, Altman DG. External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol, 2013, 13: 33.
|
39. |
陈峰, 柏建岭, 赵杨, 等. 全基因组关联研究中的统计分析方法. 中华流行病学杂志, 2011, 32(4): 400-404.
|