1. |
Brand CS. Management of retinal vascular diseases: a patient-centric approach. Eye (Lond), 2012, 26(Suppl 2): S1-16.
|
2. |
Tah V, Orlans HO, Hyer J, et al. Anti-VEGF therapy and the retina: an update. J Ophthalmol, 2015, 2015: 627674.
|
3. |
Coscas G, Loewenstein A, Augustin A, et al. Management of retinal vein occlusion-consensus document. Ophthalmologica, 2011, 226(1): 4-28.
|
4. |
Rogers S, McIntosh RL, Cheung N, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology, 2010, 117(2): 313-319.
|
5. |
Aref AA, Scott IU. Management of macular edema secondary to central retinal vein occlusion: an evidence-based. Adv Ther, 2011, 28(1): 40-50.
|
6. |
Karia N. Retinal vein occlusion: pathophysiology and treatment options. Clin Ophthalmol, 2010, 4: 809-816.
|
7. |
Epstein DL, Algvere PV, von Wendt G, et al. Bevacizumab for macular edema in central retinal vein occlusion: a prospective, randomized, double-masked clinical study. Ophthalmology, 2012, 119(6): 1184-1189.
|
8. |
Ferrara N, Damico L, Shams N, et al. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina, 2006, 26(8): 859-870.
|
9. |
Roth DB, Cukras C, Radhakrishnan R, et al. Intravitreal triamcinolone acetonide injections in the treatment of retinal vein occlusions. Ophthalmic Surg Lasers Imaging, 2008, 39(6): 446-454.
|
10. |
Spooner K, Hong T, Fraser-Bell S, et al. Current outcomes of anti-VEGF therapy in the treatment of macular edema secondary to central retinal vein occlusions: a systematic review and meta-analysis. Asia Pac J Ophthalmol (Phila), 2019, 8(3): 236-246.
|
11. |
Ogura Y, Roider J, Korobelnik JF, et al. Intravitreal aflibercept for macular edema secondary to central retinal vein occlusion: 18-month results of the phase 3 GALILEO study. Am J Ophthalmol, 2014, 158(5): 1032-1038.
|
12. |
Edington M, Connolly J, Chong NV. Pharmacokinetics of intravitreal anti-VEGF drugs in vitrectomized versus non-vitrectomized eyes. Expert Opin Drug Metab Toxicol, 2017, 13(12): 1217-1224.
|
13. |
Brown DM, Campochiaro PA, Singh RP, et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology, 2010, 117(6): 1124-1133.
|
14. |
Pai SA, Shetty R, Vijayan PB, et al. Clinical, anatomic, and electrophysiologic evaluation following intravitreal bevacizumab for macular edema in retinal vein occlusion. Am J Ophthalmol, 2007, 143(4): 601-606.
|
15. |
Campochiaro PA, Hafiz G, Shah SM, et al. Ranibizumab for macular edema due to retinal vein occlusions: implication of VEGF as a critical stimulator. Mol Ther, 2008, 16(4): 791-799.
|
16. |
Sassa Y, Hata Y. Antiangiogenic drugs in the management of ocular diseases: focus on antivascular endothelial growth factor. Clin Ophthalmol, 2010, 4: 275-283.
|
17. |
Braithwaite T, Nanji AA, Lindsley K, et al. Anti-vascular endothelial growth factor for macular oedema secondary to central retinal vein occlusion. Cochrane Database Syst Rev, 2014, (5): CD007325.
|
18. |
Ehlers JP, Kim SJ, Yeh S, et al. Therapies for macular edema associated with branch retinal vein occlusion: a report by the American academy of ophthalmology. Ophthalmology, 2017, 124(9): 1412-1423.
|
19. |
Schauwvlieghe AM, Dijkman G, Hooymans JM, et al. Comparing the effectiveness of bevacizumab to ranibizumab in patients with exudative age-related macular degeneration. The BRAMD Study. PLoS One, 2016, 11(5): 1897-1908.
|
20. |
CATT Research Group, Martin DF, Maguire MG, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med, 2011, 364(20): 1897-908.
|
21. |
Vader MJC, Schauwvlieghe AME, Verbraak FD, et al. Comparing the efficacy of bevacizumab and ranibizumab in patients with retinal vein occlusion: the bevacizumab to ranibizumab in retinal vein occlusions (BRVO) study, a randomized trial. Ophthalmol Retina, 2020, 4(6): 576-587.
|
22. |
Wei W, Weisberger A, Zhu L, et al. Efficacy and safety of ranibizumab in Asian patients with branch retinal vein occlusion: results from the randomized BLOSSOM study. Ophthalmol Retina, 2020, 4(1): 57-66.
|
23. |
Hykin P, Prevost AT, Vasconcelos JC, et al. Clinical effectiveness of intravitreal therapy with ranibizumab vs aflibercept vs bevacizumab for macular edema secondary to central retinal vein occlusion: a randomized clinical trial. JAMA Ophthalmol, 2019, 137(11): 1256-1264.
|
24. |
Gregori NZ, Feuer W, Rosenfeld PJ. Novel method for analyzing snellen visual acuity measurements. Retina, 2010, 30(7): 1046-1050.
|
25. |
Clarke M, Horton R. Bringing it all together: Lancet-Cochrane collaborate on systematic reviews. Lancet, 2001, 357(9270): 1728.
|
26. |
Narayanan R, Panchal B, Das T, et al. A randomised, double-masked, controlled study of the efficacy and safety of intravitreal bevacizumab versus ranibizumab in the treatment of macular oedema due to branch retinal vein occlusion: MARVEL Report No. 1. Br J Ophthalmol, 2015, 99(7): 954-959.
|
27. |
Brown DM, Campochiaro PA, Bhisitkul RB, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology, 2011, 118(8): 1594-1602.
|
28. |
Campochiaro PA, Heier JS, Feiner L, et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology, 2010, 117(6): 1102-1112.
|
29. |
Scott IU, VanVeldhuisen PC, Ip MS, et al. Baseline factors associated with 6-month visual acuity and retinal thickness outcomes in patients with macular edema secondary to central retinal vein occlusion or hemiretinal vein occlusion: SCORE2 study report 4. JAMA Ophthalmol, 2017, 135(6): 639-649.
|
30. |
Scott IU, VanVeldhuisen PC, Ip MS, et al. Effect of bevacizumab vs aflibercept on visual acuity among patients with macular edema due to central retinal vein occlusion: the SCORE2 randomized clinical trial. JAMA, 2017, 317(20): 2072-2087.
|
31. |
Korobelnik JF, Holz FG, Roider J, et al. Intravitreal aflibercept injection for macular edema resulting from central retinal vein occlusion: one-year results of the phase 3 GALILEO study. Ophthalmology, 2014, 121(1): 202-208.
|
32. |
Holz FG, Roider J, Ogura Y, et al. VEGF Trap-Eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study. Br J Ophthalmol, 2013, 97(3): 278-284.
|
33. |
Heier JS, Clark WL, Boyer DS, et al. Intravitreal aflibercept injection for macular edema due to central retinal vein occlusion: two-year results from the COPERNICUS study. Ophthalmology, 2014, 121(7): 1414-1420.
|
34. |
Brown DM, Heier JS, Clark WL, et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study. Am J Ophthalmol, 2013, 155(3): 429-437.
|
35. |
Boyer D, Heier J, Brown DM, et al. Vascular endothelial growth factor Trap-Eye for macular edema secondary to central retinal vein occlusion: six-month results of the phase 3 COPERNICUS study. Ophthalmology, 2012, 119(5): 1024-1032.
|
36. |
Epstein DL, Algvere PV, von Wendt G, et al. Benefit from bevacizumab for macular edema in central retinal vein occlusion: twelve-month results of a prospective, randomized study. Ophthalmology, 2012, 119(12): 2587-2591.
|
37. |
Campochiaro PA, Brown DM, Awh CC, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology, 2011, 118(10): 2041-2049.
|
38. |
Kinge B, Stordahl PB, Forsaa V, et al. Efficacy of ranibizumab in patients with macular edema secondary to central retinal vein occlusion: results from the sham-controlled ROCC study. Am J Ophthalmol, 2010, 150(3): 310-314.
|
39. |
Strauss O. The retinal pigment epithelium in visual function. Physiol Rev, 2005, 85(3): 845-881.
|
40. |
Lardenoye CW, Probst K, DeLint PJ, et al. Photoreceptor function in eyes with macular edema. Invest Ophthalmol Vis Sci, 2000, 41(12): 4048-4053.
|
41. |
Busch C, Rehak M, Sarvariya C, et al. Long-term visual outcome and its predictors in macular oedema secondary to retinal vein occlusion treated with dexamethasone implant. Br J Ophthalmol, 2019, 103(4): 463-468.
|
42. |
Bressler SB, Qin H, Beck RW, et al. Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab. Arch Ophthalmol, 2012, 130(9): 1153-1161.
|
43. |
Pichi F, Elbarky AM, Elhamaky TR. Outcome of "treat and monitor" regimen of aflibercept and ranibizumab in macular edema secondary to non-ischemic branch retinal vein occlusion. Int Ophthalmol, 2019, 39(1): 145-153.
|
44. |
Lotfy A, Solaiman KAM, Abdelrahman A, et al. Efficacy and frequency of intarvitreal aflibercept versus bevacizumab for macular edema secondary to central retinal vein occlusion. Retina, 2018, 38(9): 1795-1800.
|
45. |
Furukawa TA, Barbui C, Cipriani A, et al. Imputing missing standard deviations in meta-analyses can provide accurate results. J Clin Epidemiol, 2006, 59(1): 7-10.
|