1. |
Tripepi G, Jager KJ, Dekker FW, et al. Testing for causality and prognosis: etiological and prognostic models. Kidney Int, 2008, 74(12): 1512-1515.
|
2. |
von Düring ME, Jenssen T, Bollerslev J, et al. Visceral fat is better related to impaired glucose metabolism than body mass index after kidney transplantation. Transpl Int, 2015, 28(10): 1162-1171.
|
3. |
Bhat M, Hathcock M, Kremers WK, et al. Portal vein encasement predicts neoadjuvant therapy response in liver transplantation for perihilar cholangiocarcinoma protocol. Transpl Int, 2015, 28(12): 1383-1391.
|
4. |
Pianta TJ, Peake PW, Pickering JW, et al. Evaluation of biomarkers of cell cycle arrest and inflammation in prediction of dialysis or recovery after kidney transplantation. Transpl Int, 2015, 28(12): 1392-1404.
|
5. |
Núñez E, Steyerberg EW, Núñez J. Regression modeling strategies. Rev Esp Cardiol, 2011, 64(6): 501-507.
|
6. |
Chowdhury MZI, Turin TC. Variable selection strategies and its importance in clinical prediction modelling. Fam Med Community Health, 2020, 8(1): e000262.
|
7. |
Johnson AE, Pollard TJ, Shen L, et al. MIMIC-Ⅲ, a freely accessible critical care database. Sci Data, 2016, 3: 160035.
|
8. |
Yang J, Li Y, Liu Q, et al. Brief introduction of medical database and data mining technology in big data era. J Evid Based Med, 2020, 13(1): 57-69.
|
9. |
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res, 2003, 3(3): 1157-1182.
|
10. |
Royston P, Moons KG, Altman DG, et al. Prognosis and prognostic research: Developing a prognostic model. BMJ, 2009, 338: b604.
|
11. |
Heinze G, Dunkler D. Five myths about variable selection. Transpl Int, 2017, 30(1): 6-10.
|
12. |
Zhang Z, Reinikainen J, Adeleke KA, et al. Time-varying covariates and coefficients in Cox regression models. Ann Transl Med, 2018, 6(7): 121.
|
13. |
Alves LF, Fernandes BF, Burnier JV, et al. Incidence of epithelial lesions of the conjunctiva in a review of 12 102 specimens in Canada (Quebec). Arq Bras Oftalmol, 2011, 74(1): 21-23.
|
14. |
张玉. 自变量个数远大于样本数情形下(p>n)罚函数回归法的改进. 江苏教育学院学报(自然科学版), 2012, 28(3): 28-32.
|
15. |
Kursa M, Rudnicki W. Feature selection with the boruta package. J Stat Soft, 2010, 36: 1-13.
|
16. |
Goodman S. A dirty dozen: twelve p-value misconceptions. Semin Hematol, 2008, 45(3): 135-140.
|
17. |
Han J, Zheng H, Xing Y, et al. V2V: A deep learning approach to variable-to-variable selection and translation for multivariate time-varying data. IEEE Trans Vis Comput Graph, 2021, 27(2): 1290-1300.
|
18. |
Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods for random forests and omics data sets. Brief Bioinform, 2019, 20(2): 492-503.
|
19. |
Heinze G, Wallisch C, Dunkler D. Variable selection - a review and recommendations for the practicing statistician. Biom J, 2018, 60(3): 431-449.
|
20. |
Wiegand RE. Performance of using multiple stepwise algorithms for variable selection. Stat Med, 2010, 29(15): 1647-1659.
|