1. |
Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med, 2000, 342(25): 1887-1892.
|
2. |
窦亚兰, 戴江红, 黄爱龙. 准试验研究. 中华流行病学杂志, 2015, 36(9): 1018-1019.
|
3. |
Ashenfelter OC, Card D. Using the longitudinal structure of earnings to estimate the effect of training programs. Mass. , USA: National Bureau of Economic Research Cambridge, 1984.
|
4. |
Athey S, Imbens GW. Identification and inference in nonlinear difference-in-differences models. Econometrica, 2006, 74(2): 431-497.
|
5. |
Dimick JB, Ryan AM. Methods for evaluating changes in health care policy: the difference-in-differences approach. JAMA, 2014, 312(22): 2401-2402.
|
6. |
刘小宁, 高文龙, 颜虹. 双重差分模型在社区干预研究效果评价中的应用. 中国卫生统计, 2013, 30(1): 21-22.
|
7. |
沈敏学, 胡明, 曾娜, 等. 双重差分模型在医学研究中的应用. 中国卫生统计, 2015, 32(3): 528-531.
|
8. |
赵炜, 赵焕虎, 牟菲, 等. 运用双重差分模型评价社区跌倒预防的干预效果. 中国妇幼卫生杂志, 2018, 9(1): 18-21.
|
9. |
侯艳杰, 王瑜, 颜诗源, 等. 长期护理保险对中老年人医疗服务利用, 医疗负担及健康的影响—基于双重差分法的实证研究. 中国卫生政策研究, 2021, 14(9): 35-40.
|
10. |
Michael YL, Wu C, Pan K, et al. Postmenopausal breast cancer and physical function change: a difference-in-differences analysis. J Am Geriatr Soc, 2020, 68(5): 1029-1036.
|
11. |
Wright PG. Tariff on animal and vegetable oils. New York: Macmillan Company, 1928.
|
12. |
Maciejewski ML, Brookhart MA. Using instrumental variables to address bias from unobserved confounders. JAMA, 2019, 321(21): 2124-2125.
|
13. |
Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol, 2000, 29(4): 722-729.
|
14. |
Martens EP, Pestman WR, de Boer A, et al. Instrumental variables: application and limitations. Epidemiology, 2006, 17(3): 260-267.
|
15. |
Markovitz AA, Mack JA, Nallamothu BK, et al. Incremental effects of antihypertensive drugs: instrumental variable analysis. BMJ, 2017, 359: j5542.
|
16. |
Chhabra KR, Telem DA, Chao GF, et al. Comparative safety of sleeve gastrectomy and gastric bypass: an instrumental variables approach. Ann Surg, 2022, 275(3): 539-545.
|
17. |
Werner RM, Coe NB, Qi M, et al. Patient outcomes after hospital discharge to home with home health care vs to a skilled nursing facility. JAMA Intern Med, 2019, 179(5): 617-623.
|
18. |
高雪, 薛付忠, 黄丽红, 等. 孟德尔随机化模型及其规范化应用的统计学共识. 中国卫生统计, 2021, 38(3): 471-475.
|
19. |
Hartwig FP, Borges MC, Horta BL, et al. Inflammatory biomarkers and risk of schizophrenia: a 2-sample mendelian randomization study. JAMA Psychiatry, 2017, 74(12): 1226-1233.
|
20. |
Baiocchi M, Cheng J, Small DS. Instrumental variable methods for causal inference. Stat Med, 2014, 33(13): 2297-2340.
|
21. |
Thistlethwaite DL, Campbell DT. Regression-discontinuity analysis: an alternative to the ex post facto experiment. J Edu Psychol, 1960, 51(6): 309.
|
22. |
Venkataramani AS, Bor J, Jena AB. Regression discontinuity designs in healthcare research. BMJ, 2016, 352: i1216.
|
23. |
郭昭艳, 刘莉, 余方方, 等. 断点回归设计在流行病学研究中的应用. 中华预防医学杂志, 2021, 55(9): 1168-1172.
|
24. |
王健, 冷安丽, 唐彬. 断点回归设计在卫生经济领域的应用与进展. 中国卫生经济, 2018, 37(7): 8-11.
|
25. |
赵西亮. 基本有用的计量经济学. 北京: 北京大学出版社, 2017: 186-194.
|
26. |
Bor J, Moscoe E, Mutevedzi P, et al. Regression discontinuity designs in epidemiology: causal inference without randomized trials. Epidemiology, 2014, 25(5): 729-737.
|
27. |
Tennant P, Doxford-Hook E, Flynn L, et al. Fasting plasma glucose, diagnosis of gestational diabetes and the risk of large for gestational age: a regression discontinuity analysis of routine data. BJOG, 2022, 129(1): 82-89.
|
28. |
Scott L, Redaniel MT, Booker M, et al. Regression discontinuity analysis for pharmacovigilance: statin example reflected trial findings showing little evidence of harm. J Clin Epidemiol, 2022, 141: 121-131.
|
29. |
Xiong X, Li R, Yang H. How the spouse's retirement affects the cognitive health of individuals in china: a fresh evidence from the perspective of social interaction. Front Public Health, 2021, 9: 796775.
|
30. |
Box GE, Tiao GC. Intervention analysis with applications to economic and environmental problems. J Am Stat Associat, 1975, 70(349): 70-79.
|
31. |
Penfold RB, Zhang F. Use of interrupted time series analysis in evaluating health care quality improvements. Acad Pediatr, 2013, 13(6 Suppl): S38-S44.
|
32. |
朱星月, 林腾飞, 米源, 等. 间断时间序列模型及其在卫生政策干预效果评价中的应用. 中国药事, 2018, 32(11): 1531-1540.
|
33. |
李洋, 于石成, 金承刚, 等. 两组中断时间序列设计及其分析方法. 中华流行病学杂志, 2019, 40(9): 1159-1163.
|
34. |
Kontopantelis E, Doran T, Springate DA, et al. Regression based quasi-experimental approach when randomisation is not an option: interrupted time series analysis. BMJ, 2015, 350: h2750.
|
35. |
王飞, 汤少梁, 赵琨, 等. 应用间断时间序列评价某县级公立医院医药价格改革效果. 中国卫生统计, 2016, 33(1): 78-80.
|
36. |
Findlay BL, Britton CJ, Glasgow AE, et al. Long-term success with diminished opioid prescribing after implementation of standardized postoperative opioid prescribing guidelines: an interrupted time series analysis. Mayo Clin Proc, 2021, 96(5): 1135-1146.
|
37. |
Clavería A, Delgado-Martín MV, Goicoechea-Castaño A, et al. Interrupted time series analysis of pediatric infectious diseases and the consumption of antibiotics in an atlantic european region during the SARS-CoV-2 pandemic. Antibiotics (Basel), 2022, 11(2): 264.
|
38. |
Jandoc R, Burden AM, Mamdani M, et al. Interrupted time series analysis in drug utilization research is increasing: systematic review and recommendations. J Clin Epidemiol, 2015, 68(8): 950-956.
|
39. |
于石成, 王琦琦, 毛凡, 等. 中断时间序列设计及其分析方法. 中华预防医学杂志, 2019, 53(8): 858-864.
|
40. |
Hendrickse J, Yeaton WH. An empirical validation of the regression point displacement design using within-study comparison logic: emerging possibilities and cautions. Eval Rev, 2021, 45(6): 279-308.
|
41. |
Bonander C, Humphreys D, Degli Esposti M. Synthetic control methods for the evaluation of single-unit interventions in epidemiology: a tutorial. Am J Epidemiol, 2021, 190(12): 2700-2711.
|
42. |
Harris AD, Lautenbach E, Perencevich E. A systematic review of quasi-experimental study designs in the fields of infection control and antibiotic resistance. Clin Infect Dis, 2005, 41(1): 77-82.
|
43. |
Lopez Bernal JA, Andrews N, Amirthalingam G. The use of quasi-experimental designs for vaccine evaluation. Clin Infect Dis, 2019, 68(10): 1769-1776.
|
44. |
Liu T, Ungar L, Kording K. Quantifying causality in data science with quasi-experiments. Nat Comput Sci, 2021, 1(1): 24-32.
|
45. |
黄丽红, 魏永越, 陈峰. 如何控制观察性疗效比较研究中的混杂因素: (二)未知或未测量混杂因素的统计学分析方法. 中华流行病学杂志, 2019, 40(11): 1450-1455.
|