1. |
Rothwell PM. Treating individuals 2. Subgroup analysis in randomised controlled trials:importance, indications, and interpretation. Lancet, 2005, 365(9454): 176-186.
|
2. |
Sun X, Ioannidis JP, Agoritsas T, et al. How to use a subgroup analysis: users' guide to the medical literature. JAMA, 2014, 311(4): 405-411.
|
3. |
Kent DM, Steyerberg E, van Klaveren D. Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects. BMJ, 2018, 363: k4245.
|
4. |
Gong X, Hu M, Basu M, et al. Heterogeneous treatment effect analysis based on machine-learning methodology. CPT Pharmacometrics Syst Pharmacol, 2021, 10(11): 1433-1443.
|
5. |
Brookes ST, Whitely E, Egger M, et al. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. J Clin Epidemiol, 2004, 57(3): 229-236.
|
6. |
Athey S, Imbens G. Recursive partitioning for heterogeneous causal effects. Proc Natl Acad Sci U S A, 2016, 113(27): 7353-7360.
|
7. |
Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. J Am Stat Assoc, 2018, 113(523): 1228-1242.
|
8. |
何文静, 尤东方, 张汝阳, 等. 利用因果森林估计异质性人群下个体的处理效应. 中华流行病学杂志, 2019, 40(6): 707-712.
|
9. |
Podgorelec V, Kokol P, Stiglic B, et al. Decision trees: an overview and their use in medicine. J Med Syst, 2002, 26(5): 445-463.
|
10. |
Breiman L. Random forests. Machine Learning. 2001: 45, 5-32.
|
11. |
Athey S, Wager S. Estimating treatment effects with causal forests: an application. Observational Studies, 2019, 5(2): 37-51.
|
12. |
Look AHEAD Regearch Group, Wing RR, Bolin P, et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med, 2013, 369(2): 145-154.
|
13. |
Baum A, Scarpa J, Bruzelius E, et al. Targeting weight loss interventions to reduce cardiovascular complications of type 2 diabetes: a machine learning-based post-hoc analysis of heterogeneous treatment effects in the Look AHEAD trial. Lancet Diabetes Endocrinol, 2017, 5(10): 808-815.
|
14. |
SPRINT Research Group, Wright JT, Williamson JD, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med, 2015, 373(22): 2103-2116.
|
15. |
Scarpa J, Bruzelius E, Doupe P, et al. Assessment of risk of harm associated with intensive blood pressure management among patients with hypertension who smoke: a secondary analysis of the systolic blood pressure intervention trial. JAMA Netw Open, 2019, 2(3): e190005.
|
16. |
Inoue K, Seeman TE, Horwich T, et al. Heterogeneity in the association between the presence of coronary artery calcium and cardiovascular events: a machine-learning approach in the MESA study. Circulation, 2023, 147(2): 132-141.
|
17. |
Goldstein BA, Rigdon J. Using machine learning to identify heterogeneous effects in randomized clinical trials-moving beyond the forest plot and into the forest. JAMA Netw Open, 2019, 2(3): e190004.
|
18. |
Künzel SR, Sekhon JS, Bickel PJ, et al. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc Natl Acad Sci U S A, 2019, 116(10): 4156-4165.
|
19. |
Blakely T, Lynch J, Simons K, et al. Reflection on modern methods: when worlds collide-prediction, machine learning and causal inference. Int J Epidemiol, 2021, 49(6): 2058-2064.
|