1. |
D'Agostino RB, Grundy S, Sullivan LM, et al. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA, 2001, 286(2): 180-187.
|
2. |
Goldstein BA, Navar AM, Pencina MJ, et al. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc, 2017, 24(1): 198-208.
|
3. |
Debray TP, Moons KG, Ahmed I, et al. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. Stat Med, 2013, 32(18): 3158-3180.
|
4. |
Califf RM, Harrell FE. Individual risk prediction using data beyond the medical clinic. CMAJ, 2018, 190(32): E947-E948.
|
5. |
Sprague S, Matta JM, Bhandari M, et al. Multicenter collaboration in observational research: improving generalizability and efficiency. J Bone Joint Surg Am, 2009, 91(Suppl 3): 80-86.
|
6. |
Wynants L, Van Huffel S, Van Calster B, et al. Clinical risk prediction models based on multicenter data: methods for model development and validation. 2016.
|
7. |
Ye J, Zhuang X, Li X, et al. Novel metabolic classification for extrahepatic complication of metabolic associated fatty liver disease: a data-driven cluster analysis with international validation. Metabolism, 2022, 136: 155294.
|
8. |
Wynants L, Kent DM, Timmerman D, et al. Untapped potential of multicenter studies: a review of cardiovascular risk prediction models revealed inappropriate analyses and wide variation in reporting. Diagn Progn Res, 2019, 3: 6.
|
9. |
Merlo J, Viciana-Fernández FJ, Ramiro-Fariñas D, et al. Bringing the individual back to small-area variation studies: a multilevel analysis of all-cause mortality in Andalusia, Spain. Soc Sci Med, 2012, 75(8): 1477-1487.
|
10. |
Holodinsky JK, Austin PC, Williamson TS. An introduction to clustered data and multilevel analyses. Fam Pract, 2020, 37(5): 719-722.
|
11. |
Wynants L, Vergouwe Y, Van Huffel S, et al. Does ignoring clustering in multicenter data influence the performance of prediction models. a simulation study. Stat Methods Med Res, 2018, 27(6): 1723-1736.
|
12. |
Meisner A, Parikh CR, Kerr KF. Biomarker combinations for diagnosis and prognosis in multicenter studies: principles and methods. Stat Methods Med Res, 2019, 28(4): 969-985.
|
13. |
Merlo J, Asplund K, Lynch J, et al. Population effects on individual systolic blood pressure: a multilevel analysis of the World Health Organization MONICA Project. Am J Epidemiol, 2004, 159(12): 1168-1179.
|
14. |
Merlo J, Wagner P, Ghith N, et al. An original stepwise multilevel logistic regression analysis of discriminatory accuracy: the case of neighbourhoods and health. PLoS One, 2016, 11(4): e0153778.
|
15. |
Kahan BC. Accounting for centre-effects in multicentre trials with a binary outcome - when, why, and how. BMC Med Res Methodol, 2014, 14: 20.
|
16. |
Falconieri N, Van Calster B, Timmerman D, et al. Developing risk models for multicenter data using standard logistic regression produced suboptimal predictions: a simulation study. Biom J, 2020, 62(4): 932-944.
|
17. |
McNeish D, Kelley K. Fixed effects models versus mixed effects models for clustered data: reviewing the approaches, disentangling the differences, and making recommendations. Psychol Methods, 2019, 24(1): 20-35.
|
18. |
Adams G, Gulliford MC, Ukoumunne OC, et al. Patterns of intra-cluster correlation from primary care research to inform study design and analysis. J Clin Epidemiol, 2004, 57(8): 785-794.
|
19. |
Gulliford MC, Adams G, Ukoumunne OC, et al. Intraclass correlation coefficient and outcome prevalence are associated in clustered binary data. J Clin Epidemiol, 2005, 58(3): 246-251.
|
20. |
Pavlou M, Ambler G, Seaman S, et al. A note on obtaining correct marginal predictions from a random intercepts model for binary outcomes. BMC Med Res Methodol, 2015, 15: 59.
|