1. |
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econo, 2003, 22(2): 151-185.
|
2. |
Ravva P, Karlsson MO, French JL. A linearization approach for the model-based analysis of combined aggregate and individual patient data. Stat Med, 2014, 33(9): 1460-1476.
|
3. |
Brodniewicz T, Grynkiewicz G. Preclinical drug development. Acta Pol Pharm, 2010, 67(6): 578-585.
|
4. |
Trame MN, Riggs M, Biliouris K, et al. Perspective on the state of pharmacometrics and systems pharmacology integration. CPT Pharmacometrics Syst Pharmacol, 2018, 7(10): 617-620.
|
5. |
Elmeliegy M, Ghobrial O. Model-informed drug development and discovery: an overview of current practices (Chapter 14). Adejare A. Remington (Twenty-third Edition). Academic Press, 2021: 263-280.
|
6. |
Chan P, Peskov K, Song X. Applications of model-based meta-analysis in drug development. Pharm Res, 2022, 39(8): 1761-1777.
|
7. |
Ahn JE, French JL. Longitudinal aggregate data model-based meta-analysis with NONMEM: approaches to handling within treatment arm correlation. J Pharmacokinet Pharmacodyn, 2010, 37(2): 179-201.
|
8. |
李禄金, 丁俊杰, 刘东阳, 等. 基于模型的荟萃分析一般考虑. 中国临床药理学与治疗学, 2020, 25(11): 1250-1267.
|
9. |
Upreti VV, Venkatakrishnan K. Model-based meta-analysis: optimizing research, development, and utilization of therapeutics using the totality of evidence. Clin Pharmacol Ther, 2019, 106(5): 981-992.
|
10. |
Boucher M, Bennetts M. The many flavors of model-based meta-analysis: part I-introduction and landmark data. CPT Pharmacometrics Syst Pharmacol, 2016, 5(2): 54-64.
|
11. |
Deng Z, Wang H, Chen Z, et al. Bibliometric analysis of dendritic epidermal T cell (DETC) research from 1983 to 2019. Front Immunol, 2020, 11: 259.
|
12. |
Gauthier É. Bibliometric analysis of scientific and technological research: a user's guide to the methodology - ARCHIVED. Science and Technology Redesign Project, Statistics Canada, 1998.
|
13. |
Ejaz H, Zeeshan HM, Ahmad F, et al. Bibliometric analysis of publications on the omicron variant from 2020 to 2022 in the SCOPUS database using R and VOSviewer. Int J Environ Res Public Health, 2022, 19(19): 12407.
|
14. |
Aria M, Cuccurullo C. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetr, 2017, 11(4): 959-975.
|
15. |
Ekundayo TC, Okoh AI. A global bibliometric analysis of plesiomonas-related research (1990 - 2017). PLoS One, 2018, 13(11): e207655.
|
16. |
Chiu W, Ho Y. Bibliometric analysis of tsunami research. Scientometrics, 2007, 73(1): 3-17.
|
17. |
Liu X, Zhan FB, Hong S, et al. A bibliometric study of earthquake research: 1900–2010. Scientometrics, 2012, 92(3): 747-765.
|
18. |
Ji Q, Pang X, Zhao X. A bibliometric analysis of research on Antarctica during 1993–2012. Scientometrics, 2014, 101(3): 1925-1939.
|
19. |
Nicholls PT. Price's square root law: Empirical validity and relation to Lotka's law. Infor Proces & Manage, 1988, 24(4): 469-477.
|
20. |
张勤, 刘宇静, 左婵媛, 等. 基于文献计量学分析的全球食品追溯研究进展. 食品科学, 2023: 1-14.
|
21. |
Mandema JW, Cox E, Alderman J. Therapeutic benefit of eletriptan compared to sumatriptan for the acute relief of migraine pain - results of a model-based meta-analysis that accounts for encapsulation. Cephalalgia, 2005, 25(9): 715-725.
|
22. |
Zhang S, Ren YP, Shang DW, et al. Model-based meta-analysis of population pharmacokinetic models for paclitaxel in humans, rats and mice. J of Chin Pharm Sci, 2013, 48(7): 546-552.
|
23. |
Wang Y, Sung C, Dartois C, et al. Elucidation of relationship between tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development. Clin Pharmacol Ther, 2009, 86(2): 167-174.
|
24. |
Cai T, Abel L, Langford O, et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: systematic review with pairwise, network, and dose-response meta-analyses. BMJ, 2021, 374: n1537.
|
25. |
Ito K, Ahadieh S, Corrigan B, et al. Disease progression meta-analysis model in Alzheimer's disease. Alzheimers Dement, 2010, 6(1): 39-53.
|
26. |
Rogers JA, Polhamus D, Gillespie WR, et al. Combining patient-level and summary-level data for Alzheimer's disease modeling and simulation: a β regression meta-analysis. J Pharmacokinet Pharmacodyn, 2012, 39(5): 479-498.
|
27. |
Mandema JW, Hermann D, Wang W, et al. Model-based development of gemcabene, a new lipid-altering agent. AAPS J, 2005, 7(3): E513-E522.
|
28. |
Mandema JW, Salinger DH, Baumgartner SW, et al. A dose-response meta-analysis for quantifying relative efficacy of biologics in rheumatoid arthritis. Clin Pharmacol Ther, 2011, 90(6): 828-835.
|
29. |
Maloney A, Rosenstock J, Fonseca V. A model-based meta-analysis of 24 antihyperglycemic drugs for type 2 diabetes: comparison of treatment effects at therapeutic doses. Clin Pharmacol Ther, 2019, 105(5): 1213-1223.
|
30. |
Demin I, Hamrén B, Luttringer O, et al. Longitudinal model-based meta-analysis in rheumatoid arthritis: an application toward model-based drug development. Clin Pharmacol Ther, 2012, 92(3): 352-359.
|
31. |
Mawdsley D, Bennetts M, Dias S, et al. Model-based network meta-analysis: a framework for evidence synthesis of clinical trial data. CPT Pharmacometrics Syst Pharmacol, 2016, 5(8): 393-401.
|
32. |
van der Wouden F, Youn H. The impact of geographical distance on learning through collaboration. Res Policy, 2023, 52(2): 104698.
|
33. |
Flower DR. To affinity and beyond: a personal reflection on the design and discovery of drugs. Molecules, 2022, 27(21): 7624.
|
34. |
Dimasi JA. New drug development in the United States from 1963 to 1999. Clin Pharmacol Ther, 2001, 69(5): 286-296.
|
35. |
DiMasi JA, Bryant NR, Lasagna L. New drug development in the United States from 1963 to 1990. Clin Pharmacol Ther, 1991, 50(5 Pt 1): 471-486.
|
36. |
Zheng X, He Y, Xu L, et al. Quantitative analysis of the placebo response in pharmacotherapy of insomnia and its application in clinical trials. Sleep, 2020, 43(5): zsz286.
|
37. |
Zhang N, Zheng X, Liu H, et al. Testing whether the progression of Alzheimer's disease changes with the year of publication, additional design, and geographical area: a modeling analysis of literature aggregate data. Alzheimers Res Ther, 2020, 12(1): 64.
|
38. |
Wang ZZ, Zheng QS, Liu HX, et al. Development and application of the placebo response model in clinical trials for primary sjögren's syndrome. Front Immunol, 2021, 12: 783246.
|
39. |
Guinney J, Wang T, Laajala TD, et al. Prediction of overall survival for patients with metastatic castration-resistant prostate cancer: development of a prognostic model through a crowdsourced challenge with open clinical trial data. Lancet Oncol, 2017, 18(1): 132-142.
|
40. |
韦春香, 何华, 柳晓泉. 基于模型的meta分析在药物研发中的应用. 药学进展, 2018, 42(03): 187-192.
|
41. |
Association AS. MBMA Sub Group.
|
42. |
Li M, Dave N, Salem AH, et al. Model-based meta-analysis of progression-free survival in non-Hodgkin lymphoma patients. Medicine (Baltimore), 2017, 96(35): e7988.
|
43. |
Wattmo C. Prediction models for assessing long-term outcome in Alzheimer's disease: a review. Am J Alzheimers Dis Other Demen, 2013, 28(5): 440-449.
|
44. |
Maringwa J, Sardu ML, Hang Y, et al. Characterizing effects of antidiabetic drugs on heart rate, systolic and diastolic blood pressure. Clin Pharmacol Ther, 2021, 109(6): 1583-1592.
|
45. |
Bougioukas KI, Vounzoulaki E, Mantsiou CD, et al. Global mapping of overviews of systematic reviews in healthcare published between 2000 and 2020: a bibliometric analysis. J Clin Epid, 2021, 137: 58-72.
|
46. |
Wouters OJ, Shadlen KC, Salcher-Konrad M, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet, 2021, 397(10278): 1023-1034.
|
47. |
Luke CJ, Subbarao K. Vaccines for pandemic influenza. Emerg Infect Dis, 2006, 12(1): 66-72.
|
48. |
Kandala B, Plock N, Chawla A, et al. Accelerating model-informed decisions for COVID-19 vaccine candidates using a model-based meta-analysis approach. EBioMedicine, 2022, 84: 104264.
|
49. |
Hutchinson L, Steiert B, Soubret A, et al. Models and machines: how deep learning will take clinical pharmacology to the next level. CPT Pharmacometrics Syst Pharmacol, 2019, 8(3): 131-134.
|
50. |
Pedder H, Dias S, Bennetts M, et al. Modelling time-course relationships with multiple treatments: model-based network meta-analysis for continuous summary outcomes. Res Synth Methods, 2019, 10(2): 267-286.
|
51. |
Pedder H, Boucher M, Dias S, et al. Performance of model-based network meta-analysis (MBNMA) of time-course relationships: a simulation study. Res Synth Methods, 2020, 11(5): 678-697.
|
52. |
Slejko JF, Willke RJ, Ribbing J, et al. Translating pharmacometrics to a pharmacoeconomic model of COPD. Value Health, 2016, 19(8): 1026-1032.
|