1. |
陈园园, 王萍. 罕见病患者权利的缺失与保护. 医学与社会, 2016, 29(10): 68-70.
|
2. |
Lu Y, Han J. The definition of rare disease in China and its prospects. Intractable Rare Dis Res, 2022, 11(1): 29-30.
|
3. |
Nguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet, 2020, 28(2): 165-173.
|
4. |
Chung CCY, Hong Kong Genome Project, Chu ATW, et al. Rare disease emerging as a global public health priority. Front Public Health, 2022, 10: 1028545.
|
5. |
李莹. 关于我国罕见病相关政策制定的探讨—基于罕见病群体生活状况调研的分析. 中国软科学, 2014, 278(2): 77-89.
|
6. |
黄恒琪, 于娟, 廖晓, 等. 知识图谱研究综述. 计算机系统应用, 2019, 28(6): 1-12.
|
7. |
梁静, 文奕. 知识图谱在医学辅助诊断中的应用研究. 医学信息学杂志, 2022, 43(11): 34-40.
|
8. |
王喜益, 叶志弘, 汤磊雯. 范围综述在护理领域的应用进展. 中华护理杂志, 2019, 54(8): 1259-1263.
|
9. |
Lockwood C, Dos Santos KB, Pap R. Practical guidance for knowledge synthesis: scoping review methods. Asian Nurs Res (Korean Soc Nurs Sci), 2019, 13(5): 287-294.
|
10. |
Seo H, Kim D, Chae JH, et al. Development of Korean rare disease knowledge base. Healthc Inform Res, 2012, 18(4): 272-278.
|
11. |
Lopes P, Oliveira JL. An innovative portal for rare genetic diseases research: the semantic diseasecard. J Biomed Inform, 2013, 46(6): 1108-1115.
|
12. |
Choquet R, Maaroufi M, Fonjallaz Y, et al. LORD: a phenotype-genotype semantically integrated biomedical data tool to support rare disease diagnosis coding in health information systems. AMIA Annu Symp Proc. 2015, 11(5): 434-440.
|
13. |
Pinol M, Alves R, Teixido I, et al. Rare disease discovery: an optimized disease ranking system. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1184-1192.
|
14. |
Sernadela P, González-Castro L, Carta C, et al. Linked registries: connecting rare diseases patient registries through a semantic web layer. Biomed Res Int, 2017, 2017: 8327980.
|
15. |
Adler A, Kirchmeier P, Reinhard J, et al. PhenoDis: a comprehensive database for phenotypic characterization of rare cardiac diseases. Orphanet J Rare Dis, 2018, 13(1): 22.
|
16. |
Gurovich Y, Hanani Y, Bar O, et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat Med, 2019, 25(1): 60-64.
|
17. |
Li X, Wang Y, Wang D, et al. Improving rare disease classification using imperfect knowledge graph. BMC Med Inform Decis Mak, 2019, 19(5): 238.
|
18. |
Subirats L, Conesa J, Armayones M. Biomedical holistic ontology for people with rare diseases. Int J Environ Res Public Health, 2020, 17(17): 6038.
|
19. |
Zhu Q, Nguyen DT, Grishagin I, et al. An integrative knowledge graph for rare diseases, derived from the Genetic and Rare Diseases Information Center (GARD). J Biomed Semantics, 2020, 11(1): 13.
|
20. |
Latorre-Pellicer A, Ascaso Á, Trujillano L, et al. Evaluating face2gene as a tool to identify cornelia de lange syndrome by facial phenotypes. Int J Mol Sci, 2020, 21(3): 1042.
|
21. |
Zhu Q, Nguyen DT, Alyea G, et al. Phenotypically similar rare disease identification from an integrative knowledge graph for data harmonization: preliminary study. JMIR Med Inform, 2020, 8(10): e18395.
|
22. |
陈一龙, 卜嘉彬, 李景宇, 等. 基于知识图谱的罕见病就医决策引擎设计研究. 华西医学, 2021, 36(12): 1730-1733.
|
23. |
Zhu Q, Nguyễn ÐT, Sheils T, et al. Scientific evidence based rare disease research discovery with research funding data in knowledge graph. Orphanet J Rare Dis, 2021, 16(1): 483.
|
24. |
Yang J, Dong C, Duan H, et al. RDmap: a map for exploring rare diseases. Orphanet J Rare Dis, 2021, 16(1): 101.
|
25. |
程世成. 智能药物重定向与疾病辅助决策关键技术研究. 大连: 大连理工大学, 2021.
|
26. |
Havrilla JM, Liu C, Dong X, et al. PhenCards: a data resource linking human phenotype information to biomedical knowledge. Genome Med, 2021, 13(1): 91.
|
27. |
Sun Z, Yin H, Chen H, et al. Disease prediction via graph neural networks. IEEE J Biomed Health Inform, 2021, 25(3): 818-826.
|
28. |
Alves VM, Korn D, Pervitsky V, et al. Knowledge-based approaches to drug discovery for rare diseases. Drug Discov Today, 2022, 27(2): 490-502.
|
29. |
Kuo TC, Wang PH, Wang YK, et al. RSDB: a rare skin disease database to link drugs with potential drug targets for rare skin diseases. Sci Data, 2022, 9(1): 521.
|
30. |
Zhu Q, Qu C, Liu R, et al. Rare disease-based scientific annotation knowledge graph. Front Artif Intell, 2022, 5: 932665.
|
31. |
Foksinska A, Crowder CM, Crouse AB, et al. The precision medicine process for treating rare disease using the artificial intelligence tool mediKanren. Front Artif Intell, 2022, 5: 910216.
|
32. |
Ma C, Zhou Z, Liu H, et al. KGML-xDTD: a knowledge graph-based machine learning framework for drug treatment prediction and mechanism description. Gigascience, 2022, 12: giad057.
|
33. |
Martínez-deMiguel C, Segura-Bedmar I, Chacón-Solano E, et al. The RareDis corpus: a corpus annotated with rare diseases, their signs and symptoms. J Biomed Inform, 2022, 125: 103961.
|
34. |
Sanjak J, Zhu Q, Math EA. Clustering rare diseases within an ontology-enriched knowledge graph. bioRxiv [Preprint], 2023, (2): 2023.02. 15.528673.
|
35. |
赵广立, 李惠钰. AI“望诊”能知罕见病. 商业观察, 2019, (Z1): 30-32.
|