1. |
Flores M, Glusman G, Brogaard K, et al. P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med, 2013, 10(6): 565-576.
|
2. |
Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what, why, and how. BMJ, 2009, 338: b375.
|
3. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594.
|
4. |
Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med, 2013, 10(2): e1001381.
|
5. |
Grove WM, Zald DH, Lebow BS, et al. Clinical versus mechanical prediction: a meta-analysis. Psychol Assess, 2000, 12(1): 19-30.
|
6. |
Royston P, Moons KG, Altman DG, et al. Prognosis and prognostic research: developing a prognostic model. BMJ, 2009, 338: b604.
|
7. |
Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research: validating a prognostic model. BMJ, 2009, 338: b605.
|
8. |
Dekkers OM, Mulder JM. When will individuals meet their personalized probabilities. A philosophical note on risk prediction. Eur J Epidemiol, 2020, 35(12): 1115-1121.
|
9. |
Piccininni M, Konigorski S, Rohmann JL, et al. Directed acyclic graphs and causal thinking in clinical risk prediction modeling. BMC Med Res Methodol, 2020, 20(1): 179.
|
10. |
Sperrin M, Jenkins D, Martin GP, et al. Explicit causal reasoning is needed to prevent prognostic models being victims of their own success. J Am Med Inform Assoc, 2019, 26(12): 1675-1676.
|
11. |
Pladet L, Luijken K, Fresiello L, et al. Clinical decision support for extracorporeal membrane oxygenation: will we fly by wire. Perfusion, 2023, 38(1_suppl): 68-81.
|
12. |
Clift AK, Dodwell D, Lord S, et al. Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study. BMJ, 2023, 381: e073800.
|
13. |
Pajouheshnia R, Damen JAAG, Groenwold RHH, et al. Treatment use in prognostic model research: a systematic review of cardiovascular prognostic studies. Diagn Progn Res, 2017, 1: 15.
|
14. |
Liew SM, Doust J, Glasziou P. Cardiovascular risk scores do not account for the effect of treatment: a review. Heart, 2011, 97(9): 689-697.
|
15. |
Liew SM, Doust J, Glasziou P. Systematic review did not consider problem of treatment effects. BMJ, 2012, 345: e4355.
|
16. |
Pajouheshnia R, Schuster NA, Groenwold RHH, et al. Accounting for time‐dependent treatment use when developing a prognostic model from observational data: a review of methods. Stat Neerland, 2019, 74: 38-51.
|
17. |
Cheong-See F, Allotey J, Marlin N, et al. Prediction models in obstetrics: understanding the treatment paradox and potential solutions to the threat it poses. BJOG, 2016, 123(7): 1060-1064.
|
18. |
Groenwold RH, Moons KG, Pajouheshnia R, et al. Explicit inclusion of treatment in prognostic modeling was recommended in observational and randomized settings. J Clin Epidemiol, 2016, 78: 90-100.
|
19. |
Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology, 2000, 11(5): 550-560.
|
20. |
Sperrin M, Martin GP, Pate A, et al. Using marginal structural models to adjust for treatment drop-in when developing clinical prediction models. Stat Med, 2018, 37(28): 4142-4154.
|
21. |
van Geloven N, Swanson SA, Ramspek CL, et al. Prediction meets causal inference: the role of treatment in clinical prediction models. Eur J Epidemiol, 2020, 35(7): 619-630.
|
22. |
Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature. JAMA, 2017, 318(14): 1377-1384.
|
23. |
Huang Y, Li W, Macheret F, et al. A tutorial on calibration measurements and calibration models for clinical prediction models. J Am Med Inform Assoc, 2020, 27(4): 621-633.
|
24. |
Grant SW, Collins GS, Nashef SAM. Statistical primer: developing and validating a risk prediction model. Eur J Cardiothorac Surg, 2018, 54(2): 203-208.
|
25. |
Lin L, Sperrin M, Jenkins DA, et al. A scoping review of causal methods enabling predictions under hypothetical interventions. Diagn Progn Res, 2021, 5(1): 3.
|
26. |
Fehr J, Piccininni M, Kurth T, et al. Assessing the transportability of clinical prediction models for cognitive impairment using causal models. BMC Med Res Methodol, 2023, 23(1): 187.
|
27. |
Dickerman BA, Dahabreh IJ, Cantos KV, et al. Predicting counterfactual risks under hypothetical treatment strategies: an application to HIV. Eur J Epidemiol, 2022, 37(4): 367-376.
|
28. |
Mitra N, Roy J, Small D. The future of causal inference. Am J Epidemiol, 2022, 191(10): 1671-1676.
|
29. |
Prosperi M, Guo Y, Sperrin M, et al. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat Mach Intell, 2020, 2(7): 369-375.
|