1. |
李倩倩, 王军, 赵越, 等. 结直肠息肉发生相关危险因素的研究现状. 医学综述, 2020, 26(16): 3196-3200.
|
2. |
陈星宇, 孔令斌. 结直肠腺瘤性息肉癌变相关因素及机制研究进展. 中华肿瘤防治杂志, 2019, 26(5): 354-358.
|
3. |
Corley DA, Jensen CD, Marks AR, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med, 2014, 370(14): 1298-1306.
|
4. |
Anderson R, Burr NE, Valori R. Causes of post-colonoscopy colorectal cancers based on world endoscopy organization system of analysis. Gastroenterology, 2020, 158(5): 1287-1299.
|
5. |
Zhao S, Wang S, Pan P, et al. Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: a systematic review and meta-analysis. Gastroenterology, 2019, 156(6): 1661-1674.
|
6. |
Schottinger JE, Jensen CD, Ghai NR, et al. Association of physician adenoma detection rates with postcolonoscopy colorectal cancer. JAMA, 2022, 327(21): 2114-2122.
|
7. |
Li J, Lu J, Yan J, et al. Artificial intelligence can increase the detection rate of colorectal polyps and adenomas: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol, 2021, 33(8): 1041-1048.
|
8. |
Xu L, He X, Zhou J, et al. Artificial intelligence-assisted colonoscopy: a prospective, multicenter, randomized controlled trial of polyp detection. Cancer Med, 2021, 10(20): 7184-7193.
|
9. |
Misawa M, Kudo SE, Mori Y, et al. Characterization of colorectal lesions using a computer-aided diagnostic system for narrow-band imaging endocytoscopy. Gastroenterology, 2016, 150(7): 1531-1532.
|
10. |
Chen PJ, Lin MC, Lai MJ, et al. Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology, 2018, 154(3): 568-575.
|
11. |
Byrne MF, Shahidi N, Rex DK. Will computer-aided detection and diagnosis revolutionize colonoscopy. Gastroenterology, 2017, 153(6): 1460-1464.
|
12. |
Repici A, Badalamenti M, Maselli R, et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology, 2020, 159(2): 512-520.
|
13. |
Glissen Brown JR, Mansour NM, Wang P, et al. Deep learning computer-aided polyp detection reduces adenoma miss rate: a united states multi-center randomized tandem colonoscopy study (CADeT-CS trial). Clin Gastroenterol Hepatol, 2022, 20(7): 1499-1507.
|
14. |
Wang P, Liu P, Glissen Brown JR, et al. Lower adenoma miss rate of computer-aided detection-assisted colonoscopy vs routine white-light colonoscopy in a prospective tandem study. Gastroenterology, 2020, 159(4): 1252-1261.
|
15. |
Wang P, Liu X, Berzin TM, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol Hepatol, 2020, 5(4): 343-351.
|
16. |
Kamba S, Tamai N, Saitoh I, et al. Reducing adenoma miss rate of colonoscopy assisted by artificial intelligence: a multicenter randomized controlled trial. J Gastroenterol, 2021, 56(8): 746-757.
|
17. |
Liu WN, Zhang YY, Bian XQ, et al. Study on detection rate of polyps and adenomas in artificial-intelligence-aided colonoscopy. Saudi J Gastroenterol, 2020, 26(1): 13-19.
|
18. |
Shaukat A, Lichtenstein DR, Somers SC, et al. Computer-aided detection improves adenomas per colonoscopy for screening and surveillance colonoscopy: a randomized trial. Gastroenterology, 2022, 163(3): 732-741.
|
19. |
Ahmad A, Wilson A, Haycock A, et al. Evaluation of a real-time computer-aided polyp detection system during screening colonoscopy: AI-DETECT study. Endoscopy, 2023, 55(4): 313-319.
|
20. |
Rondonotti E, Di Paolo D, Rizzotto ER, et al. Efficacy of a computer-aided detection system in a fecal immunochemical test-based organized colorectal cancer screening program: a randomized controlled trial (AIFIT study). Endoscopy, 2022, 54(12): 1171-1179.
|
21. |
Ruffle JK, Farmer AD, Aziz Q. Artificial intelligence-assisted gastroenterology- promises and pitfalls. Am J Gastroenterol, 2019, 114(3): 422-428.
|
22. |
Gimeno-García AZ, Hernández Negrin D, Hernández A, et al. Usefulness of a novel computer-aided detection system for colorectal neoplasia: a randomized controlled trial. Gastrointest Endosc, 2023, 97(3): 528-536.
|
23. |
Wang H, Liang Z, Li LC, et al. An adaptive paradigm for computer-aided detection of colonic polyps. Phys Med Biol, 2015, 60(18): 7207-7228.
|
24. |
Roth HR, Lu L, Liu J, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging, 2016, 35(5): 1170-1181.
|
25. |
Hassan C, Wallace MB, Sharma P, et al. New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection. Gut, 2020, 69(5): 799-800.
|
26. |
Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut, 2019, 68(10): 1813-1819.
|
27. |
Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med, 2018, 169(6): 357-366.
|
28. |
Thomas J, Ravichandran R, Nag A, et al. Advancing colorectal cancer screening: a comprehensive systematic review of artificial intelligence (AI)-assisted versus routine colonoscopy. Cureus, 2023, 15(9): e45278.
|
29. |
Gong D, Wu L, Zhang J, et al. Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study. Lancet Gastroenterol Hepatol, 2020, 5(4): 352-361.
|
30. |
Deliwala SS, Hamid K, Barbarawi M, et al. Artificial intelligence (AI) real-time detection vs. routine colonoscopy for colorectal neoplasia: a meta-analysis and trial sequential analysis. Int J Colorectal Dis, 2021, 36(11): 2291-2303.
|
31. |
Ahmad OF, Soares AS, Mazomenos E, et al. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions. Lancet Gastroenterol Hepatol, 2019, 4(1): 71-80.
|
32. |
Matsuda T, Fujii T, Sano Y, et al. Randomised comparison of postpolypectomy surveillance intervals following a two-round baseline colonoscopy: the Japan Polyp Study Workgroup. Gut, 2020, 70(8): 1469-1478.
|