1. |
王佩佩, 双卫兵. 生存分析概述及模型应用. 中国医学工程, 2023, 31(11): 62-68.
|
2. |
黄丽红, 言方荣, 买亚兵, 等. 肿瘤临床研究中非比例风险生存资料的统计分析. 中国循证医学杂志, 2023, 23(7): 826-833.
|
3. |
严若华, 李卫. Cox回归模型比例风险假定的检验方法研究. 中国卫生统计, 2016, 33(2): 345-349.
|
4. |
Park SY, Park JE, Kim H, et al. Review of statistical methods for evaluating the performance of survival or other time-to-event prediction models (from conventional to deep learning approaches). Korean J Radiol, 2021, 22(10): 1697-1707.
|
5. |
Mukhopadhyay P, Ye J, Anderson KM, et al. Log-rank test vs maxcombo and difference in restricted mean survival time tests for comparing survival under nonproportional hazards in immuno-oncology trials: a systematic review and meta-analysis. JAMA Oncol, 2022, 8(9): 1294-1300.
|
6. |
Salerno S, Li Y. High-dimensional survival analysis: methods and applications. Annu Rev Stat Appl, 2023, 10(1): 25-49.
|
7. |
Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine. Nat Med, 2022, 28(1): 31-38.
|
8. |
Shehab M, Abualigah L, Shambour Q, et al. Machine learning in medical applications: a review of state-of-the-art methods. Comput Biol Med, 2022, 145: 105458.
|
9. |
Huang Y, Li J, Li M, et al. Application of machine learning in predicting survival outcomes involving real-world data: a scoping review. BMC Med Res Methodol, 2023, 23(1): 268.
|
10. |
Katzman JL, Shaham U, Cloninger A, et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol, 2018, 18(1): 24.
|
11. |
Lei J, Xu X, Xu J, et al. The predictive value of modified-DeepSurv in overall survivals of patients with lung cancer. iScience, 2023, 26(11): 108200.
|
12. |
Godoy LC, Ko DT, Farkouh ME, et al. Dealing with nonproportional hazards in coronary revascularisation studies. Can J Cardiol, 2023, 39(11): 1651-1660.
|
13. |
Gregson J, Sharples L, Stone GW, et al. Nonproportional hazards for time-to-event outcomes in clinical trials: JACC review topic of the week. J Am Coll Cardiol, 2019, 74(16): 2102-2112.
|
14. |
Chen L, Shi B, Feng S. Where medical statistics meets artificial intelligence. N Engl J Med, 2023, 389(25): 2403.
|
15. |
Ishwaran HKU, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Stat, 2008, 2: 841-860.
|
16. |
陈哲, 许恒敏, 李哲轩, 等. 随机生存森林: 基于机器学习算法的生存分析模型. 中华预防医学杂志, 2021, 55(1): 104-109.
|
17. |
李淼, 罗天娥, 郭强, 等. 随机生存森林模型在肺癌患者预后分析中的应用. 中国卫生统计, 2021, 38(3): 327-331.
|
18. |
Van Belle V, Pelckmans K, Suykens JAK, et al. Learning transformation models for ranking and survival analysis. J Mach Learn Res, 2011, 12: 819-862.
|
19. |
Van Belle V, Pelckmans K, Van Huffel S, et al. Support vector methods for survival analysis: a comparison between ranking and regression approaches. Artif Intell Med, 2011, 53(2): 107-118.
|
20. |
Shivaswamy PK, Chu W, Jansche M. A support vector approach to censored targets; proceedings of the seventh ieee international conference on data mining (ICDM 2007). 2007.
|
21. |
Chen Y, Jia Z, Mercola D, et al. A gradient boosting algorithm for survival analysis via direct optimization of concordance index. Comput Math Methods Med, 2013, 2013: 873595.
|
22. |
Hothorn T, Bühlmann P, Dudoit S, et al. Survival ensembles. Biostatistics, 2006, 7(3): 355-373.
|
23. |
Chen D, Liang S, Chen J, et al. Machine learning-based overall and cancer-specific survival prediction of M0 penile squamous cell carcinoma: a population-based retrospective study. Heliyon, 2023, 10(1): e23442.
|
24. |
Yu CN, Greiner R, Lin HC, et al. Learning patient-specific cancer survival distributions as a sequence of dependent regressors, proceedings of the neural information processing systems. 2011.
|
25. |
Gu W, Zhang Z, Xie X, et al. An improved muti-task learning algorithm for analyzing cancer survival data. IEEE/ACM Trans Comput Biol Bioinform, 2021, 18(2): 500-511.
|
26. |
Kvamme H, Borgan Ø. Continuous and discrete-time survival prediction with neural networks. Lifetime Data Anal, 2021, 27(4): 710-736.
|
27. |
Yang X, Qiu H, Wang L, et al. Predicting colorectal cancer survival using time-to-event machine learning: retrospective cohort study. J Med Internet Res, 2023, 25: e44417.
|
28. |
Adeoye J, Koohi-Moghadam M, Lo AWI, et al. Deep learning predicts the malignant-transformation-free survival of oral potentially malignant disorders. Cancers (Basel), 2021, 13(23): 6054.
|
29. |
Fotso S. Deep neural networks for survival analysis based on a multi-task framework. 2018.
|
30. |
Kiessling J, Brunnberg A, Holte G, et al. Artificial intelligence outperforms kaplan-meier analyses estimating survival after elective treatment of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg, 2023, 65(4): 600-607.
|
31. |
Antolini L, Boracchi P, Biganzoli E. A time-dependent discrimination index for survival data. Stat Med, 2005, 24(24): 3927-3944.
|
32. |
Gerds TA, Schumacher M. Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biom J, 2006, 48(6): 1029-1040.
|
33. |
Cottin A, Zulian M, Pécuchet N, et al. MS-CPFI: a model-agnostic counterfactual perturbation feature importance algorithm for interpreting black-box multi-state models. Artif Intell Med, 2024, 147: 102741.
|
34. |
Hu W, Jin T, Pan Z, et al. An interpretable ensemble learning model facilitates early risk stratification of ischemic stroke in intensive care unit: development and external validation of ICU-ISPM. Comput Biol Med, 2023, 166: 107577.
|
35. |
Saxena M, Young P, Pilcher D, et al. Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection. Intensive Care Med, 2015, 41(5): 823-832.
|
36. |
Freidlin B, Korn EL. Methods for accommodating nonproportional hazards in clinical trials: ready for the primary analysis. J Clin Oncol, 2019, 37(35): 3455-3459.
|
37. |
US Food and Drug Administration. Public workshop: oncology clinical trials in the presence of non-proportional hazards. 2018.
|
38. |
Kattan MW, Gerds TA. A framework for the evaluation of statistical prediction models. Chest, 2020, 158(1S): S29-S38.
|
39. |
杨丰春, 郑思, 李姣. 可解释机器学习方法在疾病预测中的应用: 脓毒血症患者死亡风险研究. 首都医科大学学报, 2022, 43(4): 610-617.
|
40. |
Infante G, Miceli R, Ambrogi F. Sample size and predictive performance of machine learning methods with survival data: a simulation study. Stat Med, 2023, 42(30): 5657-5675.
|
41. |
Cho H, She J, De Marchi D, et al. Machine learning and health science research: tutorial. J Med Internet Res, 2024, 26: e50890.
|
42. |
Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ, 202, 375: n2281.
|
43. |
Liu Y, Chen PC, Krause J, et al. How to read articles that use machine learning: users' guides to the medical literature. JAMA, 2019, 322(18): 1806-1816.
|
44. |
Andaur Navarro CL, Damen JAA, van Smeden M, et al. Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models. J Clin Epidemiol, 2023, 154: 8-22.
|
45. |
Dargan S, Kumar M, Ayyagari MR, et al. A survey of deep learning and its applications: a new paradigm to machine learning. Arc Compu Metho Engi, 2020, 27(4): 1071-1092.
|
46. |
Cui P, Athey S. Stable learning establishes some common ground between causal inference and machine learning. Nature Mach Intel, 2022, 4(2): 110-115.
|