1. |
Berlin KS, Williams NA, Parra GR. An introduction to latent variable mixture modeling (part 1): overview and cross-sectional latent class and latent profile analyses. J Pediatr Psychol, 2014, 39(2): 174-187.
|
2. |
Muthén BO. Latent variable mixture modeling. New developments and techniques in structural equation modeling. Lawrence Erlbaum Associates, 2001.
|
3. |
Nagin D, Tremblay RE. Trajectories of boys' physical aggression, opposition, and hyperactivity on the path to physically violent and nonviolent juvenile delinquency. Child Dev, 1999, 70(5): 1181-1196.
|
4. |
Jackson KM, Sher KJ. Similarities and differences of longitudinal phenotypes across alternate indices of alcohol involvement: a methodologic comparison of trajectory approaches. Psychol Addict Behav, 2005, 19(4): 339-351.
|
5. |
MacCallum RC, Austin JT. Applications of structural equation modeling in psychological research. Annu Rev Psychol, 2000, 51: 201-26.
|
6. |
McNeish D, Harring JR. Improving convergence in growth mixture models without covariance structure constraints. Stat Methods Med Res, 2021, 30(4): 994-1012.
|
7. |
Davies CE, Glonek GF, Giles LC. The impact of covariance misspecification in group-based trajectory models for longitudinal data with non-stationary covariance structure. Stat Methods Med Res, 2017, 26(4): 1982-1991.
|
8. |
Feldman BJ, Masyn KE, Conger RD. New approaches to studying problem behaviors: a comparison of methods for modeling longitudinal, categorical adolescent drinking data. Dev Psychol, 2009, 45(3): 652-676.
|
9. |
Lanza ST. Latent class analysis for developmental research. Child Dev Perspect, 2016, 10(1): 59-64.
|
10. |
Lanza ST, Tan X, Bray BC. Latent class analysis with distal outcomes: a flexible model-based approach. Struct Equ Modeling, 2013, 20(1): 1-26.
|
11. |
Ryoo JH, Wang C, Swearer SM, et al. Longitudinal model building using latent transition analysis: an example using school bullying data. Front Psychol, 2018, 9: 675.
|
12. |
Sotres-Alvarez D, Herring AH, Siega-Riz AM. Latent transition models to study women's changing of dietary patterns from pregnancy to 1 year postpartum. Am J Epidemiol, 2013, 177(8): 852-861.
|
13. |
Herle M, Micali N, Abdulkadir M, et al. Identifying typical trajectories in longitudinal data: modelling strategies and interpretations. Eur J Epidemiol, 2020, 35(3): 205-222.
|
14. |
Lennon H, Kelly S, Sperrin M, et al. Framework to construct and interpret latent class trajectory modelling. BMJ Open, 2018, 8(7): e020683.
|
15. |
Diallo TM, Morin AJ, Lu H. The impact of total and partial inclusion or exclusion of active and inactive time invariant covariates in growth mixture models. Psychol Methods, 2017, 22(1): 166-190.
|
16. |
van der Nest G, Lima Passos V, Candel MJJM, et al. An overview of mixture modelling for latent evolutions in longitudinal data: modelling approaches, fit statistics and software. Adv Life Course Res, 2020, 43: 100323.
|
17. |
van de Schoot R, Sijbrandij M, Winter SD, et al. The GRoLTS-checklist: guidelines for reporting on latent trajectory studies. Struct Equ Modeling, 2017, 24(3): 451-467.
|
18. |
Peto J. That the effects of smoking should be measured in pack-years: misconceptions 4. Br J Cancer, 2012, 107(3): 406-407.
|
19. |
Loupy A, Coutance G, Bonnet G, et al. Identification and characterization of trajectories of cardiac allograft vasculopathy after heart transplantation: a population-based study. Circulation, 2020, 141(24): 1954-1967.
|
20. |
Zhang YB, Chen C, Pan XF, et al. Associations of healthy lifestyle and socioeconomic status with mortality and incident cardiovascular disease: two prospective cohort studies. BMJ, 2021, 373: n604.
|
21. |
Ni Y, Tein JY, Zhang M, et al. Changes in depression among older adults in China: A latent transition analysis. J Affect Disord, 2017, 209: 3-9.
|
22. |
Nagin D. Overview of a semiparametric, group-based approach for analyzing trajectories of development. Punishment, places and perpetrators: developments in criminology and criminal justice research. 2004.
|
23. |
Neely ML, Pieper CF, Gu B, et al. Exploration of model misspecification in latent class methods for longitudinal data: Correlation structure matters. Stat Med, 2023, 42(14): 2420-2438.
|
24. |
Proust-lima C, Philipps V, Liquet B. Estimation of extended mixed models using latent classes and latent processes: the r package lcmm. J Stat Softw, 2017, 78(2): 1-56.
|
25. |
Proust-lima C, Philipps V, Liquet B. Estimation of extended mixed models using latent classes and latent processes: the R package lcmm. 2015.
|