1. |
Kwakman JJM, van Kruijsdijk RCM, Elias SG, et al. Choosing the right strategy based on individualized treatment effect predictions: combination versus sequential chemotherapy in patients with metastatic colorectal cancer. Acta Oncol, 2019, 58(3): 326-333.
|
2. |
Wilson FP, Parikh CR. Translational methods in nephrology: individual treatment effect modeling. J Am Soc Nephrol, 2018, 29(11): 2615-2618.
|
3. |
何文静, 尤东方, 张汝阳, 等. 利用因果森林估计异质性人群下个体的处理效应. 中华流行病学杂志, 2019, 40(6): 707-712.
|
4. |
Blackstone EH. Precision medicine versus evidence-based medicine: individual treatment effect versus average treatment effect. Circulation, 2019, 140(15): 1236-1238.
|
5. |
Mori M, Spertus JA, Krumholz HM. Data-driven individualized surgical decision-making: beyond "better on average" clinical trial results. JAMA Surg, 2022, 157(2): 93-94.
|
6. |
Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
|
7. |
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594.
|
8. |
Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med, 2019, 170(1): W1-W33.
|
9. |
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ, 2009, 339: b2535.
|
10. |
van Kruijsdijk RC, Visseren FL, Boni L, et al. Pemetrexed plus carboplatin versus pemetrexed in pretreated patients with advanced non-squamous non-small-cell lung cancer: treating the right patients based on individualized treatment effect prediction. Ann Oncol, 2016, 27(7): 1280-1286.
|
11. |
van Bronswijk SC, Lemmens LHJM, Huibers MJH, et al. Selecting the optimal treatment for a depressed individual: clinical judgment or statistical prediction. J Affect Disord, 2021, 279: 149-157.
|
12. |
Furukawa TA, Debray TPA, Akechi T, et al. Can personalized treatment prediction improve the outcomes, compared with the group average approach, in a randomized trial. Developing and validating a multivariable prediction model in a pragmatic megatrial of acute treatment for major depression. J Affect Disord, 2020, 274: 690-697.
|
13. |
Farooq V, van Klaveren D, Steyerberg EW, et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet, 2013, 381(9867): 639-650.
|
14. |
Nguyen TL, Collins GS, Landais P, et al. Counterfactual clinical prediction models could help to infer individualized treatment effects in randomized controlled trials-an illustration with the International Stroke Trial. J Clin Epidemiol, 2020, 125: 47-56.
|
15. |
Venema E, Mulder MJHL, Roozenbeek B, et al. Selection of patients for intra-arterial treatment for acute ischaemic stroke: development and validation of a clinical decision tool in two randomised trials. BMJ, 2017, 357: j1710.
|
16. |
Kent DM, Selker HP, Ruthazer R, et al. The stroke-thrombolytic predictive instrument: a predictive instrument for intravenous thrombolysis in acute ischemic stroke. Stroke, 2006, 37(12): 2957-2962.
|
17. |
Costa F, van Klaveren D, James S, et al. Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials. Lancet, 2017, 389(10073): 1025-1034.
|
18. |
Yeh RW, Secemsky EA, Kereiakes DJ, et al. Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention. JAMA, 2016, 315(16): 1735-1749.
|
19. |
Rothwell PM, Warlow CP. Prediction of benefit from carotid endarterectomy in individual patients: a risk-modelling study. European Carotid Surgery Trialists' Collaborative Group. Lancet, 1999, 353(9170): 2105-2110.
|
20. |
Kent DM, Steyerberg E, van Klaveren D. Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects. BMJ, 2018, 363: k4245.
|
21. |
van Klaveren D, Varadhan R, Kent DM. The predictive approaches to treatment effect heterogeneity (PATH) statement. Ann Intern Med, 2020, 172(11): 776.
|
22. |
Tabib S, Larocque D. Non-parametric individual treatment effect estimation for survival data with random forests. Bioinformatics, 2020, 36(2): 629-636.
|
23. |
Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests. J Am Stat Assoc, 2018, 113(523): 1228-1242.
|
24. |
Jaskowski M, Jaroszewicz S. Uplift modeling for clinical trial data. Presented at the ICML Workshop on Clinical Data Analysis. 2012.
|
25. |
Wang G, Heagerty PJ, Dahabreh IJ. Using effect scores to characterize heterogeneity of treatment effects. JAMA, 2024, 331(14): 1225-1226.
|
26. |
van Klaveren D, Steyerberg EW, Serruys PW, et al. The proposed 'concordance-statistic for benefit' provided a useful metric when modeling heterogeneous treatment effects. J Clin Epidemiol, 2018, 94: 59-68.
|
27. |
Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ, 2020, 369: m1328.
|