1. |
贾凯丽, 王雪梅. 医学影像人工智能新进展. 国际放射医学核医学杂志, 2020, 44(1): 27-31.
|
2. |
金征宇. 人工智能医学影像应用: 现实与挑战. 放射学实践, 2018, 33(10): 989-991.
|
3. |
Obuchowski NA, Rockette HE. Hypothesis testing of diagnostic accuracy for multiple readers and multiple tests: an ANOVA approach with dependent observations. Commun Stat Simul Comput. 1995, 24(2): 285-308.
|
4. |
尚美霞, 阎小妍, 李雪迎, 等. 采用多阅片者多病例设计评估AI辅助医疗产品临床试验的样本量估算和应用. 中国卫生统计, 2022, 39(1): 14-18.
|
5. |
Malik B, Iuanow E, Klock J. An exploratory multi-reader, multi-case study comparing transmission ultrasound to mammography on recall rates and detection rates for breast cancer lesions. Acad Radiol, 2022, (Suppl 1): S10-S18.
|
6. |
Platisa L, Vansteenkiste E, Goossens B, et al. Optimization of medical imaging display systems: using the channelized hotelling observer for detecting lung nodules - experimental study. Proceedings of SPIE Medical Imaging, 2009.
|
7. |
Han PL, Jiang L, Cheng JL, et al. Artificial intelligence-assisted diagnosis of congenital heart disease and associated pulmonary arterial hypertension from chest radiographs: a multi-reader multi-case study. Eur J Radiol, 2024, 171: 111277.
|
8. |
尚美霞, 姚晨, 阎小妍, 等. 影像诊断试验中多阅片者研究的设计与分析. 中国卫生统计, 2014, 31(2): 331-335.
|
9. |
Obuchowski NA, Bullen J. Multireader diagnostic accuracy imaging studies: fundamentals of design and analysis. Radiology, 2022, 303(1): 26-34.
|
10. |
FDA. Clinical performance assessment: considerations for computer-assisted detection devices applied to radiology images and radiology device applied to radiology images and radiology device data in premarket notification (510(k)) submissions: guidance for Industry and Food and Drug Administration Staff.
|
11. |
国家药品监督管理局医疗器械技术审评中心. 深度学习辅助决策医疗器械软件审评要点(2019年第7号). 2019年7月.
|
12. |
国家药品监督管理局. 乳腺X射线系统注册技术审查指导原则(2021年第42号). 2021年6月.
|
13. |
Hillis SL, Obuchowski NA, Berbaum KS. Power estimation for multireader ROC methods an updated and unified approach. Acad Radiol, 2011, 18(2): 129-142.
|
14. |
Wang L, Wang H, Xia C, et al. Toward standardized premarket evaluation of computer aided diagnosis/detection products: insights from FDA-approved products. Expert Rev Med Devices, 2020, 17(9): 899-918.
|
15. |
Gallas BD, Chan HP, D'Orsi CJ, et al. Evaluating imaging and computer-aided detection and diagnosis devices at the FDA. Acad Radiol, 2012, 19(4): 463-477.
|
16. |
Hillis SL, Obuchowski NA, Schartz KM, et al. A comparison of the Dorfman-Berbaum-Metz and Obuchowski-Rockette methods for receiver operating characteristic (ROC) data. Stat Med, 2005, 24(10): 1579-1607.
|
17. |
Hillis SL, Berbaum KS, Metz CE. Recent developments in the Dorfman-Berbaum-Metz procedure for multireader ROC study analysis. Acad Radiol, 2008, 15(5): 647-661.
|
18. |
Hillis SL. A comparison of denominator degrees of freedom methods for multiple observer ROC analysis. Stat Med, 2007, 26(3): 596-619.
|
19. |
Lenth RV. Some practical guidelines for effective sample size determination. Am Stat. 2001, 55(3): 187-193.
|
20. |
Basol M, Goksuluk D, Karaagaoglu E. Comparing the diagnostic performance of methods used in a full-factorial design multi-reader multi-case studies. Comput Stat, 2023, 38(3): 1537-1553.
|
21. |
Obuchowski NA. Multi-reader multi-modality ROC studies: hypothesis testing and sample size estimation using an ANOVA approach with dependent observations. With rejoinder. Acad Radiol, 1995, 2(6): 522-529.
|
22. |
Efron B, Tibshirani RJ. An introduction to the bootstrap. statistics and applied probability. Chapman & Hall/CRC, 1993.
|
23. |
Delong ER, Delong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 1988, 44(3): 837-845.
|
24. |
Dorfman DD, Berbaum KS, Metz CE. Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method. Invest Radiol, 1992, 27(9): 723-731.
|
25. |
Chen W, Petrick NA, Sahiner B. Hypothesis testing in noninferiority and equivalence MRMC ROC studies. Acad Radiol, 2012, 19(9): 1158-1165.
|
26. |
Obuchowski NA. Sample size tables for receiver operating characteristic studies. AJR Am J Roentgenol, 2000, 175(3): 603-608.
|
27. |
Hillis SL. A marginal-mean ANOVA approach for analyzing multireader multicase radiological imaging data. Stat Med, 2014, 33(2): 330-360.
|
28. |
Van Dyke CW. Cine MRI in the diagnosis of thoracic aortic dissection. 79th RSNA Meetings. 1993.
|
29. |
Dorfman DD, Berbaum KS, Lenth RV, et al. Monte Carlo validation of a multireader method for receiver operating characteristic discrete rating data: factorial experimental design. Acad Radiol, 1998, 5(9): 591-602.
|
30. |
Obuchowski NA. Sample size tables for receiver operating characteristic studies. AJR Am J Roentgenol, 2000, 175(3): 603-608.
|
31. |
Hillis SL, Schartz KM. Multireader sample size program for diagnostic studies: demonstration and methodology. J Med Imaging (Bellingham), 2018, 5(4): 045503.
|
32. |
Yasaka K, Akai H, Kunimatsu A, et al. Deep learning for staging liver fibrosis on CT: a pilot study. Eur Radiol, 2018, 28(11): 4578-4585.
|