Citation: 刘建盛, 吴洵昳, 洪震. 脑靶向纳米系统及其在癫痫诊治中的应用. Journal of Epilepsy, 2015, 1(1): 54-63. doi: 10.7507/2096-0247.20150009 Copy
1. | Kwan P, Brodie MJ. Refractory epilepsy:mechanisms and solutions. Expert Rev Neurother, 2006, 6(3):397-406. |
2. | Schmidt D, Loscher W. Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms. Epilepsia, 2005, 46(6):858-877. |
3. | Loscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver:ways out of the current dilemma. Epilepsia, 2011, 52(4):657-678. |
4. | Allen TM, Cullis PR. Drug delivery systems:entering the mainstream. Science, 2004, 303(5665):1818-1822. |
5. | Loscher W, Luna-Tortos C, Romermann K, et al. Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr Pharm Des, 2011, 17(26):2808-2828. |
6. | Couvreur P, Vauthier C. Nanotechnology:intelligent design to treat complex disease. Pharm Res, 2006, 23(7):1417-1450. |
7. | Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv, 2006, 3(2):219-232. |
8. | Postmes TJ, Hukkelhoven M, van den Bogaard AE, et al. Passage through the blood-brain barrier of thyrotropin-releasing hormone encapsulated in liposomes. J pharma pharmaco, 1980, 32(10):722-724. |
9. | van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res, 2007, 24(8):1405-1414. |
10. | Kreuter J. Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J microencap, 2013, 30(1):49-54. |
11. | Migliore MM, Vyas TK, Campbell RB, et al. Brain delivery of proteins by the intranasal route of administration:a comparison of cationic liposomes versus aqueous solution formulations. J pharma sci, 2010, 99(4):1745-1761. |
12. | Cavaletti G, Cassetti A, Canta A, et al. Cationic liposomes target sites of acute neuroinflammation in experimental autoimmune encephalomyelitis. Mol pharma, 2009, 6(5):1363-1370. |
13. | Haque S, Md S, Alam MI, et al. Nanostructure-based drug delivery systems for brain targeting. Drug develo indus pharm, 2012, 38(4):387-411. |
14. | Huwyler J, Cerletti A, Fricker G, et al. By-passing of P-glycoprotein using immunoliposomes. J drug target, 2002, 10(1):73-79. |
15. | Zhao H, Li GL, Wang RZ, et al. A comparative study of transfection efficiency between liposomes, immunoliposomes and brain-specific immunoliposomes. J Int Med Res, 2010, 38(3):957-966. |
16. | Shi N, Zhang Y, Zhu C, et al. Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA, 2001, 98(22):12754-12759. |
17. | Soni V, Kohli DV, Jain SK. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J drug target, 2008, 16(1):73-78. |
18. | Zhang X, Xie J, Li S, et al. The study on brain targeting of the amphotericin B liposomes. J drug target, 2003, 11(2):117-122. |
19. | Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res, 2007, 24(9):1759-1771. |
20. | Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J drug target, 2006, 14(9):632-645. |
21. | Bondi ML, Craparo EF, Giammona G, et al. Brain-targeted solid lipid nanoparticles containing riluzole:preparation, characterization and biodistribution. Nanomedicine, 2010, 5(1):25-32. |
22. | Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J pharm pharmaco, 2011, 63(3):342-351. |
23. | Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm, 2002, 242(1-2):121-128. |
24. | Kasongo KW, Jansch M, Muller RH, et al. Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain. J liposo res, 2011, 21(3):245-254. |
25. | Alam MI, Baboota S, Ahuja A, et al. Intranasal infusion of nanostructured lipid carriers (NLC) containing CNS acting drug and estimation in brain and blood. Drug deliv, 2013, 20(6):247-251. |
26. | Beduneau A, Hindre F, Clavreul A, et al. Brain targeting using novel lipid nanovectors. J contro rele, 2008, 126(1):44-49. |
27. | Khalil NM, Mainardes RM. Colloidal polymeric nanoparticles and brain drug delivery. Curr Drug Deliv, 2009, 6(3):261-273. |
28. | Alyaudtin RN, Reichel A, Lobenberg R, et al. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J drug target, 2001, 9(3):209-221. |
29. | Ramge P, Kreuter J, Lemmer B. Circadian phase-dependent antinociceptive reaction in mice determined by the hot-plate test and the tail-flick test after intravenous injection of dalargin-loaded nanoparticles. Chronobiol Int, 1999, 16(6):767-777. |
30. | Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol, 2004, 4(5):484-488. |
31. | Kreuter J, Alyautdin RN, Kharkevich DA, et al. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res, 1995, 674(1):171-174. |
32. | Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J drug targe, 2002, 10(4):317-325. |
33. | Calvo P, Gouritin B, Chacun H, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res, 2001, 18(8):1157-1166. |
34. | Agyare EK, Curran GL, Ramakrishnan M, et al. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer's disease and cerebral amyloid angiopathy. Pharm Res, 2008, 25(11):2674-2684. |
35. | Koziara JM, Lockman PR, Allen DD, et al. In situ blood-brain barrier transport of nanoparticles. Pharm Res, 2003, 20(11):1772-1778. |
36. | Batrakova EV, Vinogradov SV, Robinson SM, et al. Polypeptide point modifications with fatty acid and amphiphilic block copolymers for enhanced brain delivery. Bioconjug Chem, 2005, 16(4):793-802. |
37. | Kabanov AV, Batrakova EV, Miller DW. Pluronic block copolymers as modulators of drug efflux transporter activity in the blood-brain barrier. Adv Drug Deliv Rev, 2003, 55(1):151-164. |
38. | Liu JS, Wang JH, Zhou J, et al. Enhanced brain delivery of lamotrigine with Pluronic((R)) P123-based nanocarrier. Int J Nanomedicine, 2014, 9(9):3923-3935. |
39. | Wang R, Xiao R, Zeng Z, et al. Application of poly(ethylene glycol) distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine, 2012, 7(7):4185-4198. |
40. | Shao K, Huang R, Li J, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J contro rele, 2010, 147(1):118-126. |
41. | Shao K, Wu J, Chen Z, et al. A brain-vectored angiopep-2 based polymeric micelles for the treatment of intracranial fungal infection. Biomaterials, 2012, 33(28):6898-6907. |
42. | Dhanikula RS, Hammady T, Hildgen P. On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an in vitro blood-brain barrier model. J pharm sci, 2009, 98(10):3748-3760. |
43. | Dhanikula RS, Argaw A, Bouchard JF, et al. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas:enhanced efficacy and intratumoral transport capability. Molecu pharm, 2008, 5(1):105-116. |
44. | Huang RQ, Pei YY, Jiang C. Enhanced gene transfer into brain capillary endothelial cells using Antp-modified DNA-loaded nanoparticles. J biomed sci, 2007, 14(5):595-605. |
45. | Huang RQ, Qu YH, Ke WL, et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Faseb J, 2007, 21(4):1117-1125. |
46. | Huang R, Ke W, Liu Y, et al. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials, 2008, 29(2):238-246. |
47. | Huang R, Han L, Li J, et al. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med, 2009, 11(9):754-763. |
48. | Huang R, Liu S, Shao K, et al. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors. Nanotechnology, 2010, 21(26):265101. |
49. | Li J, Zhou L, Ye D, et al. Choline-derivate-modified nanoparticles for brain-targeting gene delivery. Adv Mater, 2011, 23(39):4516-4520. |
50. | Huang R, Ma H, Guo Y, et al. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson's disease. Pharm Res, 2013, 30(10):2549-2559. |
51. | Liu S, Guo Y, Huang R, Li J, et al. Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials, 2012, 33(19):4907-4916. |
52. | Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev, 2008, 60(11):1252-1265. |
53. | Su X, Zhan X, Tang F, et al. Magnetic Nanoparticles in Brain Disease Diagnosis and Targeting Drug Delivery. Current Nanoscience, 2011, 7(1):37-46. |
54. | Jun YW, Huh YM, Choi JS, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc, 2005, 127(16):5732-5733. |
55. | Enochs WS, Harsh G, Hochberg F, et al. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging, 1999, 9(2):228-232. |
56. | Lyons SA, O'Neal J, Sontheimer H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia, 2002, 39(2):162-173. |
57. | Veiseh O, Sun C, Gunn J, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano letters, 2005, 5(6):1003-1008. |
58. | Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res, 2006, 67(1):55-60. |
59. | Kirthivasan B, Singh D, Bommana MM, et al. Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system. Nanotechnology, 2012, 23(25):255102. |
60. | Kohler N, Sun C, Fichtenholtz A, et al. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small, 2006, 2(6):785-792. |
61. | Jain S, Mishra V, Singh P, et al. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm, 2003, 261(1-2):43-55. |
62. | Yoo JW, Irvine DJ, Discher DE, et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov, 2011, 10(7):521-535. |
63. | Shi J, Kundrat L, Pishesha N, et al. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc Natl Acad Sci USA, 2014, 111(28):10131-10136. |
64. | Zaitsev S, Spitzer D, Murciano JC, et al. Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood, 2010, 115(25):5241-5248. |
65. | Murciano JC, Medinilla S, Eslin D, et al. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol, 2003, 21(8):891-896. |
66. | Merkel TJ, Jones SW, Herlihy KP, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci USA, 2011, 108(2):586-591. |
67. | Doshi N, Zahr AS, Bhaskar S, et al. Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci USA, 2009, 106(51):21495-21499. |
68. | Akhtari M, Bragin A, Cohen M, et al. Functionalized magnetonanoparticles for MRI diagnosis and localization in epilepsy. Epilepsia, 2008, 49(8):1419-1430. |
69. | Juhasz C, Chugani DC, Muzik O, et al. Alpha-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology, 2003, 60(6):960-968. |
70. | Fedi M, Reutens DC, Andermann F, et al. Alpha-[11C] -Methyl-L-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency. Epilepsy Res, 2003, 52(3):203-213. |
71. | Chugani DC. alpha-methyl-L-tryptophan:mechanisms for tracer localization of epileptogenic brain regions. Biomar med, 2011, 5(5):567-575. |
72. | Akhtari M, Bragin A, Moats R, et al. Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI. Brain topography, 2012, 25(4):374-388. |
73. | Rossi MA. Targeting anti-epileptic drug therapy without collateral damage:nanocarrier-based drug delivery. Epilepsy Curr, 2012, 12(5):199-200. |
74. | Nieto Montesinos R, Beduneau A, Pellequer Y, et al. Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J control rele, 2012, 161(1):50-61. |
75. | Bennewitz MF, Saltzman WM. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics, 2009, 6(2):323-336. |
76. | Friese A, Seiller E, Quack G, et al. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm, 2000, 49(2):103-109. |
77. | Wan RQ, Noguera EC, Weiss SR. Anticonvulsant effects of intra-hippocampal injection of TRH in amygdala kindled rats. Neuroreport, 1998, 9(4):677-682. |
78. | Jaworska-Feil L, Kajta M, Budziszewska B, et al. Protective effects of TRH and its stable analogue, RGH-2202, on kainate-induced seizures and neurotoxicity in rodents. Epilepsy Res, 2001, 43(1):112-115. |
79. | Veronesi MC, Aldouby Y, Domb AJ, et al. Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res, 2009, 1303(3):151-160. |
80. | Kubek MJ, Domb AJ, Veronesi MC. Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics, 2009, 6(2):359-371. |
81. | Zhang C, Kwan P, Zuo Z, et al. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Del Rev, 2012, 64(10):930-942. |
82. | Luna-Tortos C, Fedrowitz M, Loscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology, 2008, 55(8):1364-1375. |
83. | Potschka H, Fedrowitz M, Loscher W. P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier:evidence from microdialysis experiments in rats. Neurosci Lett, 2002, 327(3):173-176. |
84. | Potschka H, Loscher W. In vivo evidence for P-glycoprotein-mediated transport of phenytoin at the blood-brain barrier of rats. Epilepsia, 2001, 42(10):1231-1240. |
85. | Alam T, Pandit J, Vohora D, et al. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery:in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv, 2014,7(2):1-14. |
86. | 邵堃,黄容琴,蒋晨,等. 脑靶向药物纳米递释系统. 东南大学学报(医学版), 2011, 30(1):169-184. |
87. | Feldmann M, Asselin MC, Liu J, et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy:a case-control study. Lancet Neurol, 2013, 12(8):777-786. |
88. | Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012, 2(1):3-44. |
89. | 华京君,孙阳阳,周建华,等. 石墨烯纳米复合材料光热效应研究进展. 化工新型材料,2014, 42(1):30-32. |
- 1. Kwan P, Brodie MJ. Refractory epilepsy:mechanisms and solutions. Expert Rev Neurother, 2006, 6(3):397-406.
- 2. Schmidt D, Loscher W. Drug resistance in epilepsy:putative neurobiologic and clinical mechanisms. Epilepsia, 2005, 46(6):858-877.
- 3. Loscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver:ways out of the current dilemma. Epilepsia, 2011, 52(4):657-678.
- 4. Allen TM, Cullis PR. Drug delivery systems:entering the mainstream. Science, 2004, 303(5665):1818-1822.
- 5. Loscher W, Luna-Tortos C, Romermann K, et al. Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr Pharm Des, 2011, 17(26):2808-2828.
- 6. Couvreur P, Vauthier C. Nanotechnology:intelligent design to treat complex disease. Pharm Res, 2006, 23(7):1417-1450.
- 7. Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv, 2006, 3(2):219-232.
- 8. Postmes TJ, Hukkelhoven M, van den Bogaard AE, et al. Passage through the blood-brain barrier of thyrotropin-releasing hormone encapsulated in liposomes. J pharma pharmaco, 1980, 32(10):722-724.
- 9. van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res, 2007, 24(8):1405-1414.
- 10. Kreuter J. Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J microencap, 2013, 30(1):49-54.
- 11. Migliore MM, Vyas TK, Campbell RB, et al. Brain delivery of proteins by the intranasal route of administration:a comparison of cationic liposomes versus aqueous solution formulations. J pharma sci, 2010, 99(4):1745-1761.
- 12. Cavaletti G, Cassetti A, Canta A, et al. Cationic liposomes target sites of acute neuroinflammation in experimental autoimmune encephalomyelitis. Mol pharma, 2009, 6(5):1363-1370.
- 13. Haque S, Md S, Alam MI, et al. Nanostructure-based drug delivery systems for brain targeting. Drug develo indus pharm, 2012, 38(4):387-411.
- 14. Huwyler J, Cerletti A, Fricker G, et al. By-passing of P-glycoprotein using immunoliposomes. J drug target, 2002, 10(1):73-79.
- 15. Zhao H, Li GL, Wang RZ, et al. A comparative study of transfection efficiency between liposomes, immunoliposomes and brain-specific immunoliposomes. J Int Med Res, 2010, 38(3):957-966.
- 16. Shi N, Zhang Y, Zhu C, et al. Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA, 2001, 98(22):12754-12759.
- 17. Soni V, Kohli DV, Jain SK. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J drug target, 2008, 16(1):73-78.
- 18. Zhang X, Xie J, Li S, et al. The study on brain targeting of the amphotericin B liposomes. J drug target, 2003, 11(2):117-122.
- 19. Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res, 2007, 24(9):1759-1771.
- 20. Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J drug target, 2006, 14(9):632-645.
- 21. Bondi ML, Craparo EF, Giammona G, et al. Brain-targeted solid lipid nanoparticles containing riluzole:preparation, characterization and biodistribution. Nanomedicine, 2010, 5(1):25-32.
- 22. Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J pharm pharmaco, 2011, 63(3):342-351.
- 23. Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm, 2002, 242(1-2):121-128.
- 24. Kasongo KW, Jansch M, Muller RH, et al. Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain. J liposo res, 2011, 21(3):245-254.
- 25. Alam MI, Baboota S, Ahuja A, et al. Intranasal infusion of nanostructured lipid carriers (NLC) containing CNS acting drug and estimation in brain and blood. Drug deliv, 2013, 20(6):247-251.
- 26. Beduneau A, Hindre F, Clavreul A, et al. Brain targeting using novel lipid nanovectors. J contro rele, 2008, 126(1):44-49.
- 27. Khalil NM, Mainardes RM. Colloidal polymeric nanoparticles and brain drug delivery. Curr Drug Deliv, 2009, 6(3):261-273.
- 28. Alyaudtin RN, Reichel A, Lobenberg R, et al. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J drug target, 2001, 9(3):209-221.
- 29. Ramge P, Kreuter J, Lemmer B. Circadian phase-dependent antinociceptive reaction in mice determined by the hot-plate test and the tail-flick test after intravenous injection of dalargin-loaded nanoparticles. Chronobiol Int, 1999, 16(6):767-777.
- 30. Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol, 2004, 4(5):484-488.
- 31. Kreuter J, Alyautdin RN, Kharkevich DA, et al. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res, 1995, 674(1):171-174.
- 32. Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J drug targe, 2002, 10(4):317-325.
- 33. Calvo P, Gouritin B, Chacun H, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res, 2001, 18(8):1157-1166.
- 34. Agyare EK, Curran GL, Ramakrishnan M, et al. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer's disease and cerebral amyloid angiopathy. Pharm Res, 2008, 25(11):2674-2684.
- 35. Koziara JM, Lockman PR, Allen DD, et al. In situ blood-brain barrier transport of nanoparticles. Pharm Res, 2003, 20(11):1772-1778.
- 36. Batrakova EV, Vinogradov SV, Robinson SM, et al. Polypeptide point modifications with fatty acid and amphiphilic block copolymers for enhanced brain delivery. Bioconjug Chem, 2005, 16(4):793-802.
- 37. Kabanov AV, Batrakova EV, Miller DW. Pluronic block copolymers as modulators of drug efflux transporter activity in the blood-brain barrier. Adv Drug Deliv Rev, 2003, 55(1):151-164.
- 38. Liu JS, Wang JH, Zhou J, et al. Enhanced brain delivery of lamotrigine with Pluronic((R)) P123-based nanocarrier. Int J Nanomedicine, 2014, 9(9):3923-3935.
- 39. Wang R, Xiao R, Zeng Z, et al. Application of poly(ethylene glycol) distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine, 2012, 7(7):4185-4198.
- 40. Shao K, Huang R, Li J, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J contro rele, 2010, 147(1):118-126.
- 41. Shao K, Wu J, Chen Z, et al. A brain-vectored angiopep-2 based polymeric micelles for the treatment of intracranial fungal infection. Biomaterials, 2012, 33(28):6898-6907.
- 42. Dhanikula RS, Hammady T, Hildgen P. On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an in vitro blood-brain barrier model. J pharm sci, 2009, 98(10):3748-3760.
- 43. Dhanikula RS, Argaw A, Bouchard JF, et al. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas:enhanced efficacy and intratumoral transport capability. Molecu pharm, 2008, 5(1):105-116.
- 44. Huang RQ, Pei YY, Jiang C. Enhanced gene transfer into brain capillary endothelial cells using Antp-modified DNA-loaded nanoparticles. J biomed sci, 2007, 14(5):595-605.
- 45. Huang RQ, Qu YH, Ke WL, et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Faseb J, 2007, 21(4):1117-1125.
- 46. Huang R, Ke W, Liu Y, et al. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials, 2008, 29(2):238-246.
- 47. Huang R, Han L, Li J, et al. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med, 2009, 11(9):754-763.
- 48. Huang R, Liu S, Shao K, et al. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors. Nanotechnology, 2010, 21(26):265101.
- 49. Li J, Zhou L, Ye D, et al. Choline-derivate-modified nanoparticles for brain-targeting gene delivery. Adv Mater, 2011, 23(39):4516-4520.
- 50. Huang R, Ma H, Guo Y, et al. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson's disease. Pharm Res, 2013, 30(10):2549-2559.
- 51. Liu S, Guo Y, Huang R, Li J, et al. Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials, 2012, 33(19):4907-4916.
- 52. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev, 2008, 60(11):1252-1265.
- 53. Su X, Zhan X, Tang F, et al. Magnetic Nanoparticles in Brain Disease Diagnosis and Targeting Drug Delivery. Current Nanoscience, 2011, 7(1):37-46.
- 54. Jun YW, Huh YM, Choi JS, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc, 2005, 127(16):5732-5733.
- 55. Enochs WS, Harsh G, Hochberg F, et al. Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging, 1999, 9(2):228-232.
- 56. Lyons SA, O'Neal J, Sontheimer H. Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia, 2002, 39(2):162-173.
- 57. Veiseh O, Sun C, Gunn J, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano letters, 2005, 5(6):1003-1008.
- 58. Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res, 2006, 67(1):55-60.
- 59. Kirthivasan B, Singh D, Bommana MM, et al. Active brain targeting of a fluorescent P-gp substrate using polymeric magnetic nanocarrier system. Nanotechnology, 2012, 23(25):255102.
- 60. Kohler N, Sun C, Fichtenholtz A, et al. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small, 2006, 2(6):785-792.
- 61. Jain S, Mishra V, Singh P, et al. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm, 2003, 261(1-2):43-55.
- 62. Yoo JW, Irvine DJ, Discher DE, et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov, 2011, 10(7):521-535.
- 63. Shi J, Kundrat L, Pishesha N, et al. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc Natl Acad Sci USA, 2014, 111(28):10131-10136.
- 64. Zaitsev S, Spitzer D, Murciano JC, et al. Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood, 2010, 115(25):5241-5248.
- 65. Murciano JC, Medinilla S, Eslin D, et al. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol, 2003, 21(8):891-896.
- 66. Merkel TJ, Jones SW, Herlihy KP, et al. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci USA, 2011, 108(2):586-591.
- 67. Doshi N, Zahr AS, Bhaskar S, et al. Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci USA, 2009, 106(51):21495-21499.
- 68. Akhtari M, Bragin A, Cohen M, et al. Functionalized magnetonanoparticles for MRI diagnosis and localization in epilepsy. Epilepsia, 2008, 49(8):1419-1430.
- 69. Juhasz C, Chugani DC, Muzik O, et al. Alpha-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurology, 2003, 60(6):960-968.
- 70. Fedi M, Reutens DC, Andermann F, et al. Alpha-[11C] -Methyl-L-tryptophan PET identifies the epileptogenic tuber and correlates with interictal spike frequency. Epilepsy Res, 2003, 52(3):203-213.
- 71. Chugani DC. alpha-methyl-L-tryptophan:mechanisms for tracer localization of epileptogenic brain regions. Biomar med, 2011, 5(5):567-575.
- 72. Akhtari M, Bragin A, Moats R, et al. Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI. Brain topography, 2012, 25(4):374-388.
- 73. Rossi MA. Targeting anti-epileptic drug therapy without collateral damage:nanocarrier-based drug delivery. Epilepsy Curr, 2012, 12(5):199-200.
- 74. Nieto Montesinos R, Beduneau A, Pellequer Y, et al. Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J control rele, 2012, 161(1):50-61.
- 75. Bennewitz MF, Saltzman WM. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics, 2009, 6(2):323-336.
- 76. Friese A, Seiller E, Quack G, et al. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm, 2000, 49(2):103-109.
- 77. Wan RQ, Noguera EC, Weiss SR. Anticonvulsant effects of intra-hippocampal injection of TRH in amygdala kindled rats. Neuroreport, 1998, 9(4):677-682.
- 78. Jaworska-Feil L, Kajta M, Budziszewska B, et al. Protective effects of TRH and its stable analogue, RGH-2202, on kainate-induced seizures and neurotoxicity in rodents. Epilepsy Res, 2001, 43(1):112-115.
- 79. Veronesi MC, Aldouby Y, Domb AJ, et al. Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res, 2009, 1303(3):151-160.
- 80. Kubek MJ, Domb AJ, Veronesi MC. Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics, 2009, 6(2):359-371.
- 81. Zhang C, Kwan P, Zuo Z, et al. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Del Rev, 2012, 64(10):930-942.
- 82. Luna-Tortos C, Fedrowitz M, Loscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology, 2008, 55(8):1364-1375.
- 83. Potschka H, Fedrowitz M, Loscher W. P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier:evidence from microdialysis experiments in rats. Neurosci Lett, 2002, 327(3):173-176.
- 84. Potschka H, Loscher W. In vivo evidence for P-glycoprotein-mediated transport of phenytoin at the blood-brain barrier of rats. Epilepsia, 2001, 42(10):1231-1240.
- 85. Alam T, Pandit J, Vohora D, et al. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery:in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv, 2014,7(2):1-14.
- 86. 邵堃,黄容琴,蒋晨,等. 脑靶向药物纳米递释系统. 东南大学学报(医学版), 2011, 30(1):169-184.
- 87. Feldmann M, Asselin MC, Liu J, et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy:a case-control study. Lancet Neurol, 2013, 12(8):777-786.
- 88. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012, 2(1):3-44.
- 89. 华京君,孙阳阳,周建华,等. 石墨烯纳米复合材料光热效应研究进展. 化工新型材料,2014, 42(1):30-32.