1. |
Blumcke I, Kistner I, Clusmann H, et al. Towards a clinico-pathological classification of granule 2 cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathol, 2009, 117(5): 535-544.
|
2. |
Bernasconi A. Magnetic resonance imaging in intractable epilepsy: focus on structural image analysis. Adv Neurol, 2006, 97: 273-278.
|
3. |
Blumcke I, Thom M, Aronica E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia, 2013, 54(7): 1315-1329.
|
4. |
Kaalund SS, Veno MT, Bak M, et al. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-convergence on axonal guidance. Epilepsia, 2014, 55(12): 2017-2027.
|
5. |
Miller-Delaney SF, Bryan K, Das S, et al. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain, 2015, 138(Pt 3): 616-631.
|
6. |
Engel T, Henshall DC. Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis?. Int J Physiol Pathophysiol Pharmacol, 2009, 1(2): 97-115.
|
7. |
Xu S, Pang Q, Liu Y, et al. Neuronal apoptosis in the resected sclerotic hippocampus in patients with mesial temporal lobe epilepsy. J Clin Neurosci, 2007, 14(9): 835-840.
|
8. |
Dericioglu N, Soylemezoglu F, Gursoy-Ozdemir Y, et al. Cell death and survival mechanisms are concomitantly active in the hippocampus of patients with mesial temporal sclerosis. Neuroscience, 2013, 237: 56-65.
|
9. |
Johnson MR, Behmoaras J, Bottolo L, et al. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat Commun, 2015, 6: 6031.
|
10. |
Houser CR. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res, 1990, 535(2): 195-204.
|
11. |
Scharfman HE, Sollas AL, Berger RE, et al. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol, 2003, 90(4): 2536-2547.
|
12. |
Zucchini S, Marucci G, Paradiso B, et al. Identification of miRNAs differentially expressed in human epilepsy with or without granule cell pathology. PLoS ONE, 2014, 9(8): e105521.
|
13. |
Kim D, Pertea G, Trapnell C, et al. Top Hat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 2013, 14(4): R36.
|
14. |
Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28(5): 511-515.
|
15. |
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11(10): R106.
|
16. |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15(12): 550.
|
17. |
Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by " surrogate variable analysis”. PLoS Genet, 2005 3(9): 1724-1735.
|
18. |
Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1): 139-140.
|
19. |
Chen YM, Robinson MD, Smyth GK. EdgeR: differential expression analysis of digital gene expression data. Bioconductor: User Guide, 2015.
|
20. |
Rapaport F, Khanin R, Liang Y, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol, 2013, 14(9): R95.
|
21. |
Thomas PD, Campbell MJ, Kejariwal A, et al. Panther: a library of protein families and subfamilies indexed by function. Genome Res, 2003, 13(9): 2129-2141.
|
22. |
Laan MP, KS. Hybrid clustering of gene expression data with visualization and the bootstrap. J Stat Plan Inference, 2003, 117: 275-303.
|
23. |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods, 2001, 25(4): 402-408.
|
24. |
Xu S, Pang Q, Liu Y, et al. Neuronal apoptosis in the resected sclerotic hippocampus in patients with mesial temporal lobe epilepsy. J Clin Neurosci, 2007, 14(9): 835-840.
|
25. |
Crevecoeur J, Kaminski RM, Rogister B, et al. Expression pattern of synaptic vesicle protein 2 (SV2) isoforms in patients with temporal lobe epilepsy and hippocampal sclerosis. Neuropathol Appl Neurobiol, 2014, 40(2): 191-204.
|
26. |
Abe R, Yamamoto K, Sakamoto H. Target specificity of neuronal RNA-binding protein, Mel-N1: direct binding to the 30 untranslated region of its own mRNA. Nucleic Acids Res, 1996, 24(11): 2011-2016.
|
27. |
Xiao Z, Peng J, Yang L, et al. Interleukin-1beta plays a role in the pathogenesis of mesial temporal lobe epilepsy through the PI3K/Akt/mTOR signaling pathway in hippocampal neurons. J Neuroimmunol, 2015, 282: 110-117.
|
28. |
Elliott RC, Miles MF, Lowenstein DH. Overlapping microarray profiles of dentate gyrus gene expression during development- and epilepsy-associated neurogenesis and axon outgrowth. J Neurosci, 2003, 23(6): 2218-2227.
|
29. |
Ristic AJ, Savic D, Sokic D, et al. Hippocampal antioxidative system in mesial temporal lobe epilepsy. Epilepsia, 2015, 56(5): 789-799.
|
30. |
Winden KD, Bragin A, Engel J, et al. Molecular alterations in areas generating fast ripples in an animal model of temporal lobe epilepsy.Neurobiol Dis, 2015, 78(6): 35-44.
|
31. |
Feenstra B, Pasternak B, Geller F, et al. Common variants associated with general and MMR vaccine-related febrile seizures. Nat Genet, 2014, 46(12): 1274-1282.
|
32. |
Cavazos JE, Das I, Sutula TP. Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci, 1994, 14(5): 3106-3121.
|
33. |
Kotloski R, Lynch M, Lauersdorf S, et al. Repeated brief seizures induce progressive hippocampal neuron loss and memory deficits.Prog Brain Res, 2002, 135: 95-110.
|