1. |
Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.
|
2. |
Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science, 2001, 291(5507): 1304-1351.
|
3. |
Guerreiro CA. Epilepsy: Is there hope?. Indian J Med Res, 2016, 144(5): 657-660.
|
4. |
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for classification and terminology. Epilepsia, 2017, 58(4): 512-521.
|
5. |
Hawkins NA, Zachwieja NJ, Miller AR, et al. Fine mapping of a Dravet Syndrome modifier locus on mouse chromosome 5 and candidate gene analysis by RNA-Seq. PLoS Genet, 2016, 12(10): e1006398.
|
6. |
Kukurba KR, Montgomery SB. RNA Sequencing and Analysis. Cold Spring Harb Protoc, 2015, 2015(11): 951-969.
|
7. |
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10(1): 57-63.
|
8. |
Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467-470.
|
9. |
基因芯片与高通量 DNA 测序技术前景分析. 中国科学 生命科学: 中国科学, 2008, 38(10): 891-899.
|
10. |
Bradford JR, Hey Y, Yates T, et al. A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling. BMC Genomics, 2010, 11: 282.
|
11. |
Royce TE, Rozowsky JS, Gerstein MB. Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res, 2007, 35(15): e99.
|
12. |
万海伟, 杜立新. 表达序列标签 (EST) 在基因组学研究中的应用. 生物技术通报, 2004, 2004(1): 35-38.
|
13. |
Schuler GD, Boguski MS, Stewart EA, et al. A gene map of the human genome. Science, 1996, 274(5287): 540-546.
|
14. |
王晓娜, 卢欣石. 表达序列标签的应用现状及分析方法研究. 草业科学, 2010, 27(5): 76-84.
|
15. |
Qian X, Ba Y, Zhuang Q, et al. RNA-Seq technology and its application in fish transcriptomics. Omics, 2014, 18(2): 98-110.
|
16. |
Morozova O, Hirst M, Marra MA. Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet, 2009, 10: 135-151.
|
17. |
Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet, 2011, 12(10): 671-682.
|
18. |
Cloonan N, Forrest AR, Kolle G, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods, 2008, 5(7): 613-619.
|
19. |
Mardis ER. A decade's perspective on DNA sequencing technology. Nature, 2011, 470(7333): 198-203.
|
20. |
Costa V, Angelini C, de Feis I, et al. Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol, 2010, 2010: 853916.
|
21. |
Nowrousian M. Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryot Cell, 2010, 9(9): 1300-1310.
|
22. |
van Vliet AH. Next generation sequencing of microbial transcriptomes: challenges and opportunities. Fems Microbiol Lett, 2010, 302(1): 1-7.
|
23. |
Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437(7057): 376-380.
|
24. |
Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24(3): 133-141.
|
25. |
Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet, 2008, 9: 387-402.
|
26. |
Hossain MS, Azimi N, Skiena S. Crystallizing short-read assemblies around seeds. Bmc Bioinformatics, 2009, 10(Suppl 1): 16.
|
27. |
Mutz KO, Heilkenbrinker A, Lonne M, et al. Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol, 2013, 24(1): 22-30.
|
28. |
Pagani I, Liolios K, Jansson J, et al. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res, 2012, 40(Database issue): 571-579.
|
29. |
Robertson G, Schein J, Chiu R, et al. De novo assembly and analysis of RNA-seq data. Nat Methods, 2010, 7(11): 909-912.
|
30. |
Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28(5): 511-515.
|
31. |
张莉华. 基于 RNA-Seq 技术的尼古丁影响下大鼠大脑中的基因表达研究. 天津医科大学硕士学位论文, 2014: 1-73.
|
32. |
Young MD, Wakefield MJ, Smyth GK, et al. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol, 2010, 11(2): R14.
|
33. |
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25(1): 25-29.
|
34. |
Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 2008, 36(Database issue): 480-484.
|
35. |
Calhoun JD, Hawkins NA, Zachwieja NJ, et al. Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage-gated sodium channel Scn2a. Epilepsia, 2016, 57(6): e103-107.
|
36. |
Dravet C. The core Dravet syndrome phenotype. Epilepsia, 2011, 52(Suppl 2): 3-9.
|
37. |
Miller AR, Hawkins NA, Mccollom CE, et al. Mapping genetic modifiers of survival in a mouse model of dravet syndrome. Genes Brain Behav, 2014, 13(2): 163-172.
|
38. |
Kearney JA, Plummer NW, Smith MR, et al. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience, 2001, 102(2): 307-317.
|
39. |
Hawkins NA, Kearney JA. Confirmation of an epilepsy modifier locus on mouse chromosome 11 and candidate gene analysis by RNA-Seq. Genes Brain Behav, 2012, 11(4): 452-460.
|
40. |
Larsen J, Carvill GL, Gardella E, et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology, 2015, 84(5): 480-489.
|
41. |
Sprissler RS, Wagnon JL, Bunton-Stasyshyn RK, et al. Altered gene expression profile in a mouse model of SCN8A encephalopathy. Exp Neurol, 2017, 288: 134-141.
|
42. |
Veeramah KR, O'brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet, 2012, 90(3): 502-510.
|
43. |
Banerjee J, Tripathi M, Chandra PS. Understanding complexities of synaptic transmission in medically intractable seizures: a paradigm of epilepsy research. Indian J Neurosurg, 2013, 2(1): 71-76.
|
44. |
Dixit AB, Banerjee J, Srivastava A, et al. RNA-seq analysis of hippocampal tissues reveals novel candidate genes for drug refractory epilepsy in patients with MTLE-HS. Genomics, 2016, 107(5): 178-188.
|
45. |
Bernasconi A. Magnetic resonance imaging in intractable epilepsy: focus on structural image analysis. Adv Neurol, 2006, 97: 273-278.
|
46. |
Blumcke I, Kistner I, Clusmann H, et al. Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathol, 2009, 117(5): 535-544.
|
47. |
Kaalund SS, Veno MT, Bak M, et al. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-convergence on axonal guidance. Epilepsia, 2014, 55(12): 2017-2027.
|
48. |
Griffin NG, Wang Y, Hulette CM, et al. Differential gene expression in dentate granule cells in mesial temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsia, 2016, 57(3): 376-385.
|
49. |
Oldham MC, Konopka G, Iwamoto K, et al. Functional organization of the transcriptome in human brain. Nat Neurosci, 2008, 11(11): 1271-1282.
|
50. |
Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry, 2014, 19(7): 848-852.
|