1. |
Engel J. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology. Epilepsia, 2001, 42(6): 796-803.
|
2. |
Thom M. Hippocampal sclerosis: progress since sommer. Brain Pathol, 2009, 19(4): 565-572.
|
3. |
Jimenez-Mateos EM, Henshall DC. Epilepsy and microRNA. Neuroscience, 2013, 238(2): 218-229.
|
4. |
Bartel D. MicroRNAs genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
|
5. |
Coolen M, Bally-Cuif L. MicroRNAs in brain development and physiology. Curr Opin Neurobiol, 2009, 19(5): 461-470.
|
6. |
Kan AA, van Erp S, Derijck AA, et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci, 2012, 69(18): 3127-3145.
|
7. |
Alsharafi WA, Xiao B, Abuhamed MM, et al. miRNAs: biological and clinical determinants in epilepsy. Front Mol Neurosci, 2015, 8: 59.
|
8. |
Mestdagh P, Hartmann N, Baeriswyl L, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods, 2014, 11(8): 809-815.
|
9. |
Wieser HG. ILAE Commission on Neurosurgery of Epilepsy. ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia, 2004, 45(6): 695-714.
|
10. |
Vitsios DM, Enright AJ. Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics, 2015, 31(20): 3365-3367.
|
11. |
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Core Team, 2016.
|
12. |
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11(10): R106.
|
13. |
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1): 139-140.
|
14. |
Smyth GK. limma: linear models for microarray data. In Gentleman R, Carey VJ, Huber W, et al. (Eds) Bioinformatics and computational biology solutions using r and bioconductor. New York, NY: Springer-Verlag, 2005: 397-420.
|
15. |
Benes V, Collier P, Kordes C, et al. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Sci Rep, 2015, 5: 11590.
|
16. |
Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 2009, 55(4): 611-622.
|
17. |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408.
|
18. |
Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath V3.0: deciphering microRNA function with experimental support. Nucleic Acids Res, 2015, 43(W1): 460-466.
|
19. |
Ewing B, Hillier L, Wendl MC, et al. Base-calling of automated sequencer traces using phred I. Accuracy assessment. Genome Res, 1998, 8(3): 175-185.
|
20. |
Nassirpour R, Mathur S, Gosink MM, et al. Identification of tubular injury microRNA biomarkers in urine: comparison of next-generation sequencing and qPCR-based profiling platforms. BMC Genom, 2014, 15: 485.
|
21. |
Aronica E, Fluiter K, Iyer A, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci, 2010, 31(6): 1100-1107.
|
22. |
Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, et al. miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am J Pathol, 2011, 179(5): 2519-2532.
|
23. |
Jimenez-Mateos EM, Engel T, Merino-Serrais P, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med, 2012, 18(7): 1087-1094.
|
24. |
Peng J, Omran A, Ashhab MU, et al. Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci, 2013, 50(2): 291-297.
|
25. |
Dudoit S, Yang YH, Callow MJ, et al. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin, 2002, 12: 111-139.
|
26. |
Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res, 2015, 43(Database issue): 146-152.
|
27. |
Mc Kiernan RC, Jimenez-Mateos EM, Bray I, et al. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One, 2012, 7(5): e35921.
|
28. |
Roncon P, Soukupova M, Binaschi A, et al. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy-comparison with human epileptic samples. Sci Rep, 2015, 5: 14143.
|
29. |
Sørensen SS, Nygaard AB, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with alzheimer’s disease and other types of dementia-an exploratory study. Transl Neurodegener, 2016, 5: 6.
|
30. |
Vallelunga A, Ragusa M, Di Mauro S, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and multiple system atrophy. Front Cell Neurosci, 2014, 8: 156.
|
31. |
Wang C, Ji B, Cheng B, et al. Neuroprotection of microRNA in neurological disorders (Review). Biomed Rep, 2014, 2(5): 611-619.
|
32. |
Meissner L, Gallozzi M, Balbi M, et al. Temporal profile of microRNA expression in contused cortex after traumatic brain injury in mice. J Neurotrauma, 2016, 33(8): 713-720.
|
33. |
Jovičić A, Roshan R, Moisoi N, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci, 2013, 33(12): 5127-5137.
|
34. |
Kakimoto Y, Kamiguchi H, Ochiai E, et al. MicroRNA stability in postmortem FFPE tissues: quantitative analysis using autoptic samples from acute myocardial infarction patients. PLoS One, 2015, 10(6): e0129338.
|
35. |
Kandratavicius L, Balista PA, Lopes-Aguiar C, et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat, 2014, 10: 1693-1705.
|
36. |
Di Nuzzo M, Mangia S, Maraviglia B, et al. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res, 2014, 108(6): 995-1012.
|
37. |
Holtmaat AJ, Gorter JA, De Wit J, et al. Transient downregulation of sema3a mrna in a rat model for temporal lobe epilepsy: a novel molecular event potentially contributing to mossy fiber sprouting. Exp Neurol, 2003, 182(1): 142-150.
|
38. |
Xu B, Michalski B, Racine R, et al. Continuous infusion of neurotrophin-3 triggers sprouting, decreases the levels of TrkA and Trk C, and inhibits epileptogenesis and activity-dependent axonal growth in adult rats. Neuroscience, 2002, 115(4): 1295-1308.
|
39. |
Cupertino RB, Kappel DB, Bandeira CE, et al. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm, 2016, 123(8): 867-883.
|
40. |
Pralhada Rao R, Vaidyanathan N, Rengasamy M, et al. Sphingolipid metabolic pathway: an overview of major roles played in human diseases. J Lipids, 2013, 2013: 1-12.
|