1. |
Beghi E, Giussani G. Aging and the epidemiology of epilepsy. Neuroepidemiology, 2018, 51(3-4): 216-223.
|
2. |
Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol, 2017, 8: 301.
|
3. |
Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol, 2014, 40(5): 520-543.
|
4. |
Cendes F, Sakamoto AC, Spreafico R, et al. Epilepsies associated with hippocampal sclerosis. Acta Neuropathol, 2014, 128(1): 21-37.
|
5. |
Lerche H, Shah M, Beck H, et al. Ion channels in genetic and acquired forms of epilepsy. J Physiol, 2013, 591(4): 753-764.
|
6. |
Nava C, Dalle C, Rastetter A, et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet, 2014, 46(6): 640-645.
|
7. |
Marini C, Porro A, Rastetter A, et al. HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond. Brain, 2018, 141(11): 3160-3178.
|
8. |
He C, Chen F, Li B, et al. Neurophysiology of HCN channels: from cellular functions to multiple regulations. Prog Neurobiol, 2014, 112: 1-23.
|
9. |
Macri V, Angoli D, Accili EA. Architecture of the HCN selectivity filter and control of cation permeation. Sci Rep, 2012, 2: 894.
|
10. |
Akimoto M, VanSchouwen B, Melacini G. The structure of the apo cAMP-binding domain of HCN4-a stepping stone toward understanding the cAMP-dependent modulation of the hyperpolarization-activated cyclic-nucleotide-gated ion channels. FEBS J, 2018, 285(12): 2182-2192.
|
11. |
Lee CH, MacKinnon R. Structures of the human HCN1 hyperpolarization-activated channel. Cell, 2017, 168(1-2): 111.
|
12. |
Liu C, Xie C, Grant K, et al. Patch-clamp fluorometry-based channel counting to determine HCN channel conductance. J Gen Physiol, 2016, 148(1): 65-76.
|
13. |
Brennan GP, Baram TZ, Poolos NP. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in epilepsy. Cold Spring Harb Perspect Med, 2016, 6(3): a022384.
|
14. |
Notomi T, Shigemoto R. Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol, 2004, 471(3): 241-276.
|
15. |
Chan CS, Glajch KE, Gertler TS, et al. HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease. Nat Neurosci, 2011, 14(1): 85-92.
|
16. |
Poller WC, Bernard R, Derst C, et al. Lateral habenular neurons projecting to reward-processing monoaminergic nuclei express hyperpolarization-activated cyclic nucleotid-gated cation channels. Neuroscience, 2011, 193: 205-216.
|
17. |
Kouranova EV, Strassle BW, Ring RH, et al. Hyperpolarization-activated cyclic nucleotide-gated channel mRNA and protein expression in large versus small diameter dorsal root ganglion neurons: correlation with hyperpolarization-activated current gating. Neuroscience, 2008, 153(4): 1008-1019.
|
18. |
Powell KL, Jones NC, Kennard JT, et al. HCN channelopathy and cardiac electrophysiologic dysfunction in genetic and acquired rat epilepsy models. Epilepsia, 2014, 55(4): 609-620.
|
19. |
Seo H, Seol MJ, Lee K. Differential expression of hyperpolarization-activated cyclic nucleotide-gated channel subunits during hippocampal development in the mouse. Mol Brain, 2015, 8: 13.
|
20. |
Boychuk JA, Farrell JS, Palmer LA, et al. HCN channels segregate stimulation-evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents. J Physiol, 2017, 595(1): 247-263.
|
21. |
Weng XC, Liu SJ. Role of HCN channels in the nervous system: membrane excitability and various modulations. Chinese Journal of Applie Physiology, 2014, 30(6): 506-510.
|
22. |
Weerasinghe D, Menon P, Vucic S. Hyperpolarization-activated cyclic-nucleotide-gated channels potentially modulate axonal excitability at different thresholds. J Neurophysiol, 2017, 118(6): 3044-3050.
|
23. |
Kase D, Imoto K. The role of HCN channels on membrane excitability in the nervous system. J Signal Transduct, 2012, 2012: 619747.
|
24. |
Nolan MF, Malleret G, Lee KH, et al. The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells. Cell, 2003, 115(5): 551-564.
|
25. |
Ko KW, Rasband MN, Meseguer V, et al. Serotonin modulates spike probability in the axon initial segment through HCN channels. Nat Neurosci, 2016, 19(6): 826-834.
|
26. |
Hawkins VE, Hawryluk JM, Takakura AC, et al. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity. J Neurophysiol, 2015, 113(4): 1195-1205.
|
27. |
Sartiani L, Mannaioni G, Masi A, et al. The hyperpolarization-activated cyclic nucleotide-gated channels: from biophysics to pharmacology of a unique family of ion channels. Pharmacol Rev, 2017, 69(4): 354-395.
|
28. |
Cho YS, Kim YS, Moozhayil SJ, et al. The expression of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and HCN2 in the rat trigeminal ganglion, sensory root, and dental pulp. Neuroscience, 2015, 291: 15-25.
|
29. |
Luo P, Lu Y, Li C, et al. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region. Neurobiol Learn Mem, 2015, 123: 72-83.
|
30. |
Williams AD, Jung S, Poolos NP. Protein kinase C bidirectionally modulates Ih and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel surface expression in hippocampal pyramidal neurons. J Physiol, 2015, 593(13): 2779-2792.
|
31. |
Hammelmann V, Stieglitz MS, Hulle H, et al. Abolishing cAMP sensitivity in HCN2 pacemaker channels induces generalized seizures. JCI Insight, 2019, 4(9): 126418.
|
32. |
DeBerg HA, Brzovic PS, Flynn GE, et al. Structure and energetics of allosteric regulation of HCN2 ion channels by cyclic nucleotides. J Biol Chem, 2016, 291(1): 371-381.
|
33. |
Kusch J, Biskup C, Thon S, et al. Interdependence of receptor activation and ligand binding in HCN2 pacemaker channels. Neuron, 2010, 67(1): 75-85.
|
34. |
Ying SW, Tibbs GR, Picollo A, et al. PIP2-mediated HCN3 channel gating is crucial for rhythmic burst firing in thalamic intergeniculate leaflet neurons. J Neurosci, 2011, 31(28): 10412-10423.
|
35. |
Grzelka K, Kurowski P, Gawlak M, et al. Noradrenaline modulates the membrane potential and holding current of medial prefrontal cortex pyramidal neurons via beta1-Adrenergic receptors and HCN channels. Front Cell Neurosci, 2017, 11: 341.
|
36. |
Li CH, Zhang Q, Teng B, et al. Src tyrosine kinase alters gating of hyperpolarization-activated HCN4 pacemaker channel through Tyr531. Am J Physiol Cell Physiol, 2008, 294(1): 355-362.
|
37. |
Jung S, Bullis JB, Lau IH, Jones TD, Warner LN, Poolos NP. Downregulation of dendritic HCN channel gating in epilepsy is mediated by altered phosphorylation signaling. J Neurosci, 2010, 30(19): 6678-88.
|
38. |
Poolos NP, Bullis JB, Roth MK. Modulation of h-channels in hippocampal pyramidal neurons by p38 mitogen-activated protein kinase. J Neurosci, 2006, 26(30): 7995-8003.
|
39. |
Shin M, Chetkovich DM. Activity-dependent regulation of h channel distribution in hippocampal CA1 pyramidal neurons. J Biol Chem, 2007, 282(45): 33168-33180.
|
40. |
Parker AR, Welch MA, Forster LA, et al. SUMOylation of the hyperpolarization-activated cyclic nucleotide-gated channel 2 increases surface expression and the maximal conductance of the hyperpolarization-activated current. Front Mol Neurosci, 2016, 9: 168.
|
41. |
Noam Y, Ehrengruber MU, Koh A, et al. Filamin A promotes dynamin-dependent internalization of hyperpolarization-activated cyclic nucleotide-gated type 1 (HCN1) channels and restricts Ih in hippocampal neurons. J Biol Chem, 2014, 289(9): 5889-5903.
|
42. |
Rafizadeh S, Zhang Z, Woltz RL, et al. Functional interaction with filamin A and intracellular Ca2+enhance the surface membrane expression of a small-conductance Ca2+-activated K+(SK2) channel. Proc Natl Acad Sci U S A, 2014, 111(27): 9989-9994.
|
43. |
Santoro B, Piskorowski RA, Pian P, et al. TRIP8b splice variants form a family of auxiliary subunits that regulate gating and trafficking of HCN channels in the brain. Neuron, 2009, 62(6): 802-813.
|
44. |
Bankston JR, DeBerg HA, Stoll S, et al. Mechanism for the inhibition of the cAMP dependence of HCN ion channels by the auxiliary subunit TRIP8b. J Biol Chem, 2017, 292(43): 17794-17803.
|
45. |
Piskorowski R, Santoro B, Siegelbaum SA. TRIP8b splice forms act in concert to regulate the localization and expression of HCN1 channels in CA1 pyramidal neurons. Neuron, 2011, 70(3): 495-509.
|
46. |
Barbuti A, Scavone A, Mazzocchi N, et al. A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins. J Mol Cell Cardiol, 2012, 53(2): 187-195.
|
47. |
Michels G, Er F, Khan IF, et al. K+channel regulator KCR1 suppresses heart rhythm by modulating the pacemaker current If. PLoS One, 2008, 3(1): e1511.
|
48. |
Wilkars W, Wollberg J, Mohr E, et al. Nedd4-2 regulates surface expression and may affect N-glycosylation of hyperpolarization-activated cyclic nucleotide-gated (HCN)-1 channels. FASEB J, 2014, 28(5): 2177-2190.
|
49. |
Mu P, Huang YH. Cholinergic system in sleep regulation of emotion and motivation. Pharmacol Res, 2019, 143: 113-118.
|
50. |
Zhao Z, Zhang K, Liu X, et al. Involvement of HCN channel in muscarinic inhibitory action on tonic firing of dorsolateral striatal cholinergic interneurons. Front Cell Neurosci, 2016, 10: 71.
|
51. |
Dai Y, Jordan LM. Multiple effects of serotonin and acetylcholine on hyperpolarization-activated inward current in locomotor activity-related neurons in Cfos-EGFP mice. J Neurophysiol, 2010, 104(1): 366-381.
|
52. |
Carr DB, Andrews GD, Glen WB, et al. alpha2-Noradrenergic receptors activation enhances excitability and synaptic integration in rat prefrontal cortex pyramidal neurons via inhibition of HCN currents. J Physiol, 2007, 584(Pt 2): 437-450.
|
53. |
Gamo NJ, Lur G, Higley MJ, et al. Stress impairs prefrontal cortical function via D1 dopamine receptor interactions with hyperpolarization-activated cyclic nucleotide-gated channels. Biol Psychiatry, 2015, 78(12): 860-870.
|
54. |
Paspalas CD, Wang M, Arnsten AF. Constellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex: potential substrate for working memory deficits in schizophrenia. Cereb Cortex, 2013, 23(7): 1643-54.
|
55. |
Liu Z, Bunney EB, Appel SB, et al. Serotonin reduces the hyperpolarization-activated current (Ih) in ventral tegmental area dopamine neurons: involvement of 5-HT2 receptors and protein kinase C. J Neurophysiol, 2003, 90(5): 3201-3212.
|
56. |
Balakrishnan S, Mironov SL. CA1 Neurons acquire rett syndrome phenotype after brief activation of glutamatergic receptors: specific role of mGluR1/5. Front Cell Neurosci, 2018, 12: 363.
|
57. |
Bender RA, Baram TZ. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog Neurobiol, 2008, 86(3): 129-140.
|
58. |
DiFrancesco JC, DiFrancesco D. Dysfunctional HCN ion channels in neurological diseases. Front Cell Neurosci, 2015, 6: 174.
|
59. |
Huang Z, Walker MC, Shah MM. Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis. J Neurosci, 2009, 29(35): 10979-10988.
|
60. |
Ludwig A, Budde T, Stieber J, et al. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J, 2003, 22(2): 216-224.
|
61. |
Patterson KP, Baram TZ, Shinnar S. Origins of temporal lobe epilepsy: febrile seizures and febrile status epilepticus. Neurotherapeutics, 2014, 11(2): 242-250.
|
62. |
Wang J, Chen S, Siegelbaum SA. Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions. J Gen Physiol, 2001, 118(3): 237-250.
|
63. |
Dougherty KA, Nicholson DA, Diaz L, et al. Differential expression of HCN subunits alters voltage-dependent gating of h-channels in CA1 pyramidal neurons from dorsal and ventral hippocampus. J Neurophysiol, 2013, 109(7): 1940-1953.
|
64. |
Arnold EC, McMurray C, Gray R, et al. Epilepsy-induced reduction in HCN channel expression contributes to an increased excitability in dorsal, but not ventral, Hippocampal CA1 Neurons. eNeuro, 2019, 6(2): 76-90.
|
65. |
Nakamura Y, Shi X, Numata T, et al. Novel HCN2 mutation contributes to febrile seizures by shifting the channel's kinetics in a temperature-dependent manner. PLoS One, 2013, 8(12): e80376.
|
66. |
Nishitani A, Kunisawa N, Sugimura T, et al. Loss of HCN1 subunits causes absence epilepsy in rats. Brain Res, 2019, 1706: 209-217.
|
67. |
Tsay D, Dudman JT, Siegelbaum SA. HCN1 channels constrain synaptically evoked Ca2+spikes in distal dendrites of CA1 pyramidal neurons. Neuron, 2007, 56(6): 1076-1089.
|
68. |
Feng B, Tang YS, Chen B, et al. Early hypoactivity of hippocampal rhythms during epileptogenesis after prolonged febrile seizures in freely-moving rats. Neurosci Bull, 2015, 31(3): 297-306.
|
69. |
Campostrini G, DiFrancesco JC, Castellotti B, et al. A loss-of-function HCN4 mutation associated with familial benign myoclonic epilepsy in infancy causes increased neuronal excitability. Front Mol Neurosci, 2018, 11(8): 269.
|
70. |
Becker F, Reid CA, Hallmann K, et al. Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy. Epilepsia Open, 2017, 2(3): 334-342.
|