1. |
Bell GS, NeliganA, Sander JW. An unknown quantity: the worldwide prevalence of epilepsy. Epilepsia, 2014, 55(7): 958-962.
|
2. |
向涛, 李国良. 癫痫围发作期的影像. 中华神经科杂志, 2014, 47(1): 52-55.
|
3. |
Sato K, Arai N, Hida A, et al. Old stroke as an independent risk etiology for Todd’s paralysis. J Stroke Cerebrovasc Dis, 2017, 26(8): 1787-1792.
|
4. |
Shellhaas RA, Smith SE, O’Tool E, et al. Mimics of childhood stroke: characteristics of a prospective cohort. Pediatrics, 2006, 118(2): 704-709.
|
5. |
Merino JG, Luby M, Benson RT, et al. Predictors of acute stroke mimics in 8187 patients referred to a stroke service. J Stroke CerebrovascDis, 2013, 22(8): e397-e403.
|
6. |
Yu JT, Tan L. Diffusion-weighted magnetic resonance imaging demonstrates parenchymal pathophysiological changes in epilepsy. Brain Res Rev, 2008, 59(1): 34-41.
|
7. |
van Cauwenberge MGA, Dekeyzer S, Nikoubashman O, et al. Can perfusion CT unmask postictal stroke mimics? A case-control study of 133 patients. Neurology, 2018, 91(20): e1918-e1927.
|
8. |
Strambo D, Rey V, Rossetti AO, et al. Perfusion-CT imaging in epilepticseizures. J Neurol, 2018, 265(12): 2972-2979.
|
9. |
Hauf M, Slotboom J, Nirkko A, et al. Cortical regional hyperperfusioninnonconvulsive status epilepticus measured by dynamic brain perfusion CT. AJNR Am J Neuroradiol, 2009, 30(4): 693-698.
|
10. |
Gelfand JM, Wintermark M, Josephson SA. Cerebral perfusion-CT patternsfollowing seizure. Eur J Neurol, 2010, 17(4): 594-601.
|
11. |
Austein F, Huhndorf M, Meyne J, et al. Advanced CT for diagnosis of seizure-related stroke mimics. Eur Radiol, 2018, 28(5): 1791-1800.
|
12. |
Williams JA, Bede P, Doherty CP. An exploration of the spectrum of peri-ictalMRI change; a comprehensive literature review. Seizure, 2017, 50(1): 19-32.
|
13. |
Kellner-Weldon F, El-Koussy M, Jung S, et al. Cerebellar hypoperfusion inmigraine attack: incidence and significance. AJNR Am J Neuroradiol, 2018, 39(3): 435-440.
|
14. |
Smith AG, Rowland Hill C. Imaging assessment of acute ischaemic stroke: areview of radiological methods. Br J Radiol, 2018, 91(1083): 20170573.
|
15. |
Matsuura K, Maeda M, Okamoto K, et al. Usefulness of arterial spin-labelingimages in peri-ictal state diagnosis of epilepsy. J Neurol Sci, 2015, 359(1): 424-429.
|
16. |
Kim BS, Lee ST, Yun TJ, et al. Capability of arterial spin labeling MR imaging inlocalizing seizure focus in clinical seizure activity. Eur J Radiol, 2016, 85(7): 1295-1303.
|
17. |
Gaxiola-Valdez I, Singh S, Perera T, et al. Seizure onset zone localization usingpostictal hypoperfusion detected by arterial spin labelling MRI. Brain, 2017, 140(11): 2895-2911.
|
18. |
Storti SF, BoscoloGalazzo I, Del Felice A, et al. Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage, 2014, 102(1): 49-59.
|
19. |
Schertz M, Benzakoun M, Pyatigorskaya N, et al. Specificities of arterial spin labeling (ASL) abnormalities in acute seizure. J Neuroradiol, 2018, 61(18): 30220-30227.
|
20. |
Krumholz A, Shinnar S, French J, et al. Evidence-based guideline: management of an unprovoked first seizure in adults: report of the guideline development subcommittee of the American Academy of Neurology and theAmerican Epilepsy Society. Neurology, 2015, 85(17): 1526-1527.
|
21. |
Koutroumanidis M, Bruno E. Epileptology of the first tonic-clonicseizurein adults and prediction of seizure recurrence. Epileptic Disord, 2018, 20(6): 490-501.
|
22. |
Hakami T, McIntosh A, Todaro M, et al. MRI-identified pathology in adults with new-onset seizures. Neurology, 2013, 81(10): 920-927.
|
23. |
Hubers A, Thoma K, Schocke M, et al. Acute DWI reductions in patients aftersingle epileptic seizures more common than assumed. Front Neurol, 2018, 9(1): 550-1550.
|
24. |
Chatzikonstantinou A, Gass A, Forster A, et al. Features of acute DWIabnormalities related to status epilepticus. Epilepsy Res, 2011, 97(1): 45-51.
|
25. |
Alonazi BK, Keller SS, Fallon N, et al. Resting-state functional brain networksin adults with a new diagnosis of focal epilepsy. Brain Behav, 2019, 9(1): e01168.
|
26. |
Krishna V, Sammartino F, Rezai A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology:advances in diagnosis and treatment. JAMA Neurol, 2018, 75(2): 246-254.
|
27. |
Leinenga G, Langton C, Nisbet R, et al. Ultrasound treatment of neurologicaldiseases-current and emerging applications. Nat Rev Neurol, 2016, 12(3): 161-174.
|
28. |
Piper RJ, Hughes MA, Moran CM, et al. Focused ultrasound as anoninvasive intervention for neurological disease: a review. Br J Neurosurg, 2016, 30(3): 286-293.
|
29. |
Elias WJ, Lipsman N, Ondo WG, et al. A randomized trial of focusedultrasound thalamotomy for essential tremor. N Engl J Med, 2016, 375(8): 730-739.
|
30. |
Monteith S, Snell J, Eames M, et al. Transcranial magnetic resonance-guided focused ultrasound for temporal lobe epilepsy: a laboratory feasibility study. J Neurosurg, 2016, 125(6): 1557-1564.
|
31. |
Darrow DP. Focused ultrasound for neuromodulation. Neurotherapeutics, 2019, 16(1): 88-99.
|
32. |
Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuitactivity. Curr Opin Neurobiol, 2018, 50(1): 222-231.
|
33. |
Minjoli S, Saturnino GB, Blicher JU, et al. The impact of large structural brainchanges in chronic stroke patients on the electric field caused by transcranial brain stimulation. Neuroimage Clin, 2017, 15(1): 106-117.
|
34. |
Lohse-Busch H, Reime U, Falland R. Symptomatic treatment of unresponsive wakefulness syndrome with transcranially focused extracorporeal shockwaves. Neuro Rehabil, 2014, 35(2): 235-244.
|
35. |
Min BK, Bystritsky A, Jung KI, et al. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci, 2011, 12(1): 23.
|
36. |
Deffieux T, Younan Y, Wattiez N, et al. Lowintensity focused ultrasound modulates monkey visuomotor behavior. Curr Biol, 2013, 23(23): 2430-2433.
|
37. |
Chen KT, Wei KC, Liu HL. Theranostic strategy of focused ultrasound induced blood-brain barrier opening for CNS disease treatment. Front Pharmacol, 2019, 10(1): 86.
|
38. |
Song KH, Harvey BK, Borden MA. State-of-the-art of microbubble-assisted blood-brain barrier disruption. Theranostics, 2018, 8(16): 4393-4408.
|
39. |
Downs ME, Teichert T, Buch A, et al. Toward a cognitive neural prosthesis using focused ultrasound. Front Neurosci, 2017, 11(1): 607.
|
40. |
McDannold N, Zhang YZ, Power C, et al. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function. J Neurosurg, 2013, 119(5): 1208-1220.
|
41. |
Zhang Y, Tan H, Bertram EH, et al. Non-invasive, focal disconnection of brain circuitry using magnetic resonance-guided low-intensity focused ultrasound to deliver a neurotoxin. Ultrasound Med Biol, 2016, 42(9): 2261-2269.
|
42. |
Todd N, Zhang Y, Arcaro M, et al. Focused ultrasound induced opening of the blood–brain barrier disrupts inter-hemispheric resting state functional connectivity in the rat brain. Neuroimage, 2018, 178(1): 414-422.
|