结构磁共振成像(MRI)对癫痫的诊断和治疗至关重要,尤其是考虑行癫痫外科治疗时。尽管以前已有一些关于癫痫 MRI 的建议及指南,但在世界范围内,结构 MRI 的方法不尽相同,无法充分发挥 MRI 新技术进步的优势造福癫痫患者。因此,国际抗癫痫联盟诊断方法委员会委托 2013-2017 年神经影像专题工作组制定了一套建议,以解决以下问题:① MRI 检查的目标患者;② 癫痫 MRI 检查方案的最低要求是什么;③ 如何评估 MRI 图像;④ 如何优化病灶的检出。这些建议针对癫痫中心的临床医生和综合性/地区性医院神经科医生制订。工作组赞同在新发的全面性和局灶性癫痫中行常规的结构成像,并在需要进行详细评估时,描述病灶的范围。工作组确定了一组以三维采集为核心、统一的癫痫结构神经成像序列—HARNESS-MRI 方案。由于这些序列在大多数 MR 扫描仪上都可用,与临床环境和国家/地区无关,因此 HARNESS-MRI 方案可推广使用。工作组还赞同使用计算机辅助图像后处理技术,客观显示个体化大脑的解剖结构和病理情况。本报告通过对 MRI 全面、深入地讨论,强调这种非侵入性检查在癫痫患者管理中的独特作用。
Citation: AndreaBernasconi, FernandoCendesm, William HTheodore, 郑舒畅 齐霜 罗洁仪 译, 张志强 秦兵 审. 在癫痫患者的管理中使用结构磁共振成像的建议:国际抗癫痫神经影像专题工作组的共识报告. Journal of Epilepsy, 2020, 6(2): 145-156. doi: 10.7507/2096-0247.20200026 Copy
1. | Jones AL, Cascino GD. Evidence on use of neuroimaging for surgical treatment of temporal lobe epilepsy: a systematic review. JAMA Neurol, 2016, 73(3): 464-470. |
2. | Commission on Neuroimaging of the International League Against Epilepsy. Recommendations for neuroimaging of patients with epilepsy. Epilepsia, 1997, 38(6): 1255-1256. |
3. | Commission on Neuroimaging of the International League Against Epilepsy. Guidelines for neuroimaging evaluation of patients with uncontrolled epilepsy considered for surgery. Epilepsia, 1998, 39(6): 1375-1376. |
4. | Neuroimaging Subcommision of the International League Against Epilepsy. Commission on diagnostic strategies: recommendations for functional neuroimaging of persons with epilepsy. Epilepsia, 2000, 41(6): 1350-1356. |
5. | Gaillard WD, Chiron C, Cross JH, et al. Guidelines for imaging infants and children with recent‐onset epilepsy. Epilepsia, 2009, 50(9): 2147-2153. |
6. | Wilmshurst JM, Gaillard WD, Vinayan KP, et al. Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics. Epilepsia, 2015, 56(5): 1185-1197. |
7. | Engel J Jr, Wiebe S, French J, et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy. Epilepsia, 2003, 44(3): 741-751. |
8. | Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia, 2010, 51(5): 1069-1077. |
9. | Jehi L, Mathern GW. Who's responsible to refer for epilepsy surgery? We all are! Neurology, 2015, 84(1): 112-113. |
10. | Haneef Z, Stern J, Dewar S, Engel J Jr. Referral pattern for epilepsy surgery after evidence‐based recommendations: a retrospective study. Neurology, 2010, 75(4): 699-704. |
11. | Roberts JI, Hrazdil C, Wiebe S, et al. Neurologists’ knowledge of and attitudes toward epilepsy surgery: a national survey. Neurology, 2015, 84(2): 159-166. |
12. | Bernasconi A, Bernasconi N, Bernhardt BC, et al. Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol, 2011, 7(1): 99-108. |
13. | So EL, Lee RW. Epilepsy surgery in MRI-negative epilepsies. Curr Opin Neurol, 2014, 27(2): 206-212. |
14. | Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol, 2016, 15(2): 420-433. |
15. | Craven IJ, Griffiths PD, Bhattacharyya D, et al. 3.0 T MRI of 2000 consecutive patients with localisation‐related epilepsy. Br J Radiol, 2012, (85): 1236-1242. |
16. | Craven I, Griffiths PD, Hoggard N. Magnetic resonance imaging of epilepsy at 3 Tesla. Clin Radiol, 2011, 66(2): 278-286. |
17. | Jayakar P, Gaillard WD, Tripathi M, et al. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia, 2014, 55(3): 507-518. |
18. | Griffiths PD, Coley SC, Connolly DJ, et al. MR imaging of patients with localisation‐related seizures: initial experience at 3.0 T and relevance to the NICE guidelines. Clin Radiol, 2005, 60(5): 1090-10999. |
19. | Stylianou P, Kimchi G, Hoffmann C, et al. Neuroimaging for patient selection for medial temporal lobe epilepsy surgery. Part2: Functional neuroimaging. J Clin Neurosci, 2016, 23(1): 23-33. |
20. | Stylianou P, Hoffmann C, Blat I, et al. Neuroimaging for patient selection for medial temporal lobe epilepsy surgery. Part 1: Structural neuroimaging. J Clin Neurosci, 2016, 23(1): 14-22. |
21. | Duncan J. The current status of neuroimaging for epilepsy. Curr Opin Neurol, 2009, 22(1): 179-184. |
22. | Wellmer J, Quesada CM, Rothe L, et al. Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia, 2013, 54(8): 1977-1987. |
23. | Krumholz A, Wiebe S, Gronseth GS, et al. Evidence‐based guideline:management of an unprovoked first seizure in adults: report of the Guideline Development Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology, 2015, 84(7): 1705-1713. |
24. | Von Oertzen J, Urbach H, Jungbluth S, et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry, 2002, 73(3): 643-647. |
25. | Ruber T, David B, Elger CE. MRI in epilepsy: clinical standard and evolution. Curr Opin Neurol, 2018, 31(2): 223-231. |
26. | Hakami T, McIntosh A, Todaro M, et al. MRI‐identified pathology in adults with new‐onset seizures. Neurology, 2013, 81(4): 920-927. |
27. | Semah F, Picot MC, Adam C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology, 1998, 51(5): 1256-1262. |
28. | World Health Organization. Global maps for diagnostic imaging. 2014. Available at: https://www.who.int/diagnostic_imaging/collaboration/global_collab_maps/en/. |
29. | Harden CL, Huff JS, Schwartz TH, et al. Reassessment: neuroimaging in the emergency patient presenting with seizure (an evidence‐based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 2007, 69(8): 1772-1780. |
30. | Middlebrooks EH, Ver Hoef L, Szaflarski JP. Neuroimaging in epilepsy. Curr Neurol Neurosci Rep, 2017, 17(1): 32. |
31. | Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(3): 512-521. |
32. | Wiebe S, Jette N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol, 2012, 8(3): 669-677. |
33. | Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005‐2009. Epilepsia, 2010, 51(3): 676-685. |
34. | Blumcke I, Spreafico R, Haaker G, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med, 2017, 377(7): 1648-1656. |
35. | Eltze CM, Chong WK, Bhate S, et al. Taylor‐type focal cortical dysplasia in infants: some MRI lesions almost disappear with maturation of myelination. Epilepsia, 2005, 46(8): 1988-1992. |
36. | Engel J Jr. What can we do for people with drug‐resistant epilepsy? The 2016 Wartenberg Lecture. Neurology, 2016, 87(11): 2483-2489. |
37. | Labate A, Aguglia U, Tripepi G, et al. Long‐term outcome of mild mesial temporal lobe epilepsy: a prospective longitudinal cohort study. Neurology, 2016, 86(8): 1904-1910. |
38. | Tellez‐Zenteno JF, Hernandez Ronquillo L, Moien‐Afshari F, et al. Surgical outcomes in lesional and non‐lesional epilepsy: a systematic review and meta‐analysis. Epilepsy Res, 2010, 89(2): 310-318. |
39. | Simasathien T, Vadera S, Najm I, et al. Improved outcomes with earlier surgery for intractable frontal lobe epilepsy. Ann Neurol, 2013, 73(3): 646-654. |
40. | Cloppenborg T, May TW, Blumcke I, et al. Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. J Neurol Neurosurg Psychiatry, 2016, 87(6): 1322-1329. |
41. | Burneo JG, Shariff SZ, Liu K, et al. Disparities in surgery among patients with intractable epilepsy in a universal health system. Neurology, 2016, 86(1): 72-78. |
42. | Wiebe S. Burden of intractable epilepsy. Adv Neurol, 2006, 97(1): 1-4. |
43. | Nickels KC, Zaccariello MJ, Hamiwka LD, et al. Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat Rev Neurol, 2016, 12(3): 465-476. |
44. | Bernhardt BC, Kim H, Bernasconi N. Patterns of subregional mesiotemporal disease progression in temporal lobe epilepsy. Neurology, 2013, 81(8): 1840-1847. |
45. | Caciagli L, Bernasconi A, Wiebe S, et al. A meta‐analysis on progressive atrophy in intractable temporal lobe epilepsy: time is brain? Neurology, 2017, 89(3): 506-516. |
46. | Bernhardt BC, Worsley KJ, Kim H, et al. Longitudinal and cross‐sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology, 2009, 72(7): 1747-1754. |
47. | Bernhardt BC, Bernasconi N, Concha L, et al. Cortical thickness analysis in temporal lobe epilepsy: reproducibility and relation to outcome. Neurology, 2010, 74(7): 1776-1784. |
48. | Winston GP, Micallef C, Kendell BE, et al. The value of repeat neuroimaging for epilepsy at a tertiary referral centre: 16 years of experience. Epilepsy Res, 2013, 105(2): 349-355. |
49. | Kokkinos V, Kallifatidis A, Kapsalaki EZ, et al. Thin isotropic FLAIR MR images at 1.5 T increase the yield of focal cortical dysplasia transmantle sign detection in frontal lobe epilepsy. Epilepsy Res, 2017, 132(1): 1-7. |
50. | Mellerio C, Labeyrie MA, Chassoux F, et al. 3 T MRI improves the detection of transmantle sign in type 2 focal cortical dysplasia. Epilepsia, 2014, 55(1): 117-122. |
51. | Knake S, Triantafyllou C, Wald LL, et al. 3 T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology, 2005, 65(5): 1026-1031. |
52. | Hong SJ, Kim H, Schrader D, et al. Automated detection of cortical dysplasia type II in MRI‐negative epilepsy. Neurology, 2014, 83(1): 48-55. |
53. | Adler S, Hong SJ, Liu M, et al. Topographic principles of cortical fluid‐attenuated inversion recovery signal in temporal lobe epilepsy. Epilepsia, 2018, 59(3): 627-635. |
54. | Bernasconi N, Bernasconi A. Epilepsy: imaging the epileptic brain—time for new standards. Nat Rev Neurol, 2014, 10(1): 133-134. |
55. | Blumcke I, Thom M, Aronica E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE Commission on Diagnostic Methods. Epilepsia, 2013, 54(6): 1315-1329. |
56. | Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol, 2014, 40(3): 520-543. |
57. | Kulaga‐Yoskovitz J, Bernhardt BC, Hong SJ, et al. Multi‐contrast submillimetric 3 tesla hippocampal subfield segmentation protocol and dataset. Sci Data, 2015, 2: 150059. |
58. | Bernasconi N, Kinay D, Andermann F, et al. Analysis of shape and positioning of the hippocampal formation: an MRI study in patients with partial epilepsy and healthy controls. Brain, 2005, 128(2): 244-252. |
59. | Tsai MH, Vaughan DN, Perchyonok Y, et al. Hippocampal malrotation is an anatomic variant and has no clinical significance in MRI‐negative temporal lobe epilepsy. Epilepsia, 2016, 57(8): 1719-1728. |
60. | Abou‐Hamden A, Lau M, Fabinyi G, et al. Small temporal pole encephaloceles: a treatable cause of “lesion negative” temporal lobe epilepsy. Epilepsia, 2010, 51(12): 2199-2202. |
61. | Toledano R, Jimenez‐Huete A, Campo P, et al. Small temporal pole encephalocele: a hidden cause of “normal” MRI temporal lobe epilepsy. Epilepsia, 2016, 57(5): 841-851. |
62. | Saavalainen T, Jutila L, Mervaala E, et al. Temporal anteroinferior encephalocele: an underrecognized etiology of temporal lobe epilepsy? Neurology, 2015, 85(7): 1467-1474. |
63. | Pillay N, Fabinyi GC, Myles TS, et al. Parahippocampal epilepsy with subtle dysplasia: a cause of“imaging negative” partial epilepsy. Epilepsia, 2009, 50(12): 2611-2618. |
64. | Thompson SA, Kalamangalam GP, Tandon N. Intracranial evaluation and laser ablation for epilepsy with periventricular nodular heterotopia. Seizure, 2016, 41(2): 211-216. |
65. | Blumcke I, Thom M, Aronica E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission. Epilepsia, 2011, 52(2): 158-174. |
66. | Besson P, Andermann F, Dubeau F, et al. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain, 2008, 131(12): 3246-3255. |
67. | Martin P, Bender B, Focke NK. Post‐processing of structural MRI for individualized diagnostics. Quant Imaging Med Surg, 2015, 5(2): 188-203. |
68. | Kini LG, Gee JC, Litt B. Computational analysis in epilepsy neuroimaging:a survey of features and methods. Neuroimage Clin, 2016, 11(3): 515-529. |
69. | Bernasconi A, Bernasconi N. Unveiling epileptogenic lesions: the contribution of image processing. Epilepsia, 2011, 52(Suppl 4): 20-24. |
70. | Gaillard WD, Cross JH, Duncan JS, et al. Task Force on Practice Parameter Imaging Guidelines for International League Against Epilepsy, Commission for Diagnostics Epilepsy imaging study guideline criteria: commentary on diagnostic testing study guidelines and practice parameters. Epilepsia, 2011, 52(8): 1750-1756. |
71. | Bernasconi A, Antel SB, Collins DL, et al. Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra‐temporal partial epilepsy. Ann Neurol, 2001, 49(4): 770-775. |
72. | Colliot O, Bernasconi N, Khalili N, et al. Individual voxel‐based analysis of gray matter in focal cortical dysplasia. Neuroimage, 2006, 29(2): 162-171. |
73. | Wagner J, Weber B, Urbach H, et al. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain, 2011, 134(12): 2844-2854. |
74. | Huppertz HJ, Kurthen M, Kassubek J. Voxel‐based 3D MRI analysis for the detection of epileptogenic lesions at single subject level. Epilepsia, 2009, 50(1): 155-156. |
75. | Goubran M, Bernhardt BC, Cantor‐Rivera D, et al. In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy. Hum Brain Mapp, 2016, 37(6): 1103-1119. |
76. | Aghakhani Y, Liu X, Jette N, et al. Epilepsy surgery in patients with bilateral temporal lobe seizures: a systematic review. Epilepsia, 2014, 55(70): 1892-1901. |
77. | Sone D, Sato N, Maikusa N, et al. Automated subfield volumetric analysis of hippocampus in temporal lobe epilepsy using high‐resolution T2‐weighed MR imaging. Neuroimage Clin, 2016, 12(1): 57-64. |
78. | Hosseini MP, Nazem‐Zadeh MR, Pompili D, et al. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients. Med Phys, 2016, 43(3): 538. |
79. | Kim H, Mansi T, Bernasconi N, et al. Surface‐based multi‐template automated hippocampal segmentation: application to temporal lobe epilepsy. Med Image Anal, 2012, 16(7): 1445-1455. |
80. | Caldairou B, Bernhardt BC, Kulaga‐Yoskovitz J, et al. A Surface Patch‐Based Segmentation Method for Hippocampal Subfields. Cham, Switzerland: Springer International Publishing, 2016: 379-387. |
81. | Farid N, Girard HM, Kemmotsu N, et al. Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy. Radiology, 2012, 264(3): 542-550. |
82. | Kim H, Bernhardt BC, Kulaga‐Yoskovitz J, et al. Multivariate hippocampal subfield analysis of local MRI intensity and volume: application to temporal lobe epilepsy. Med Image Comput Comput Assist Interv, 2014, 17(2): 170-178. |
83. | Bernhardt BC, Bernasconi A, Liu M, et al. The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Ann Neurol, 2016, 80(1): 142-153. |
84. | Jackson GD, Kuzniecky RI, Cascino GD. Hippocampal sclerosis without detectable hippocampal atrophy. Neurology, 1994, 44(1): 42-46. |
85. | Kosior RK, Lauzon ML, Federico P, et al. Algebraic T2 estimation improves detection of right temporal lobe epilepsy by MR T2 relaxometry. Neuroimage, 2011, 58(2): 189-197. |
86. | Peixoto‐Santos JE, Kandratavicius L, Velasco TR, et al. Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy. Epilepsia, 2017, 58(1): 149-159. |
87. | Bernasconi A, Bernasconi N, Caramanos Z, et al. T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI. Neuroimage, 2000, 12(4): 739-746. |
88. | Winston GP, Vos SB, Burdett JL, et al. Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy. Epilepsia, 2017, 58(8): 1645-1652. |
89. | Hong S‐J, Bernhardt BC, Caldairou B, et al. Multimodal MRI profiling of focal cortical dysplasia type II. Neurology, 2017, 88(4): 734-742. |
90. | Gill RS, Hong SJ, Fadaie F, et al. Automated detection of epileptogenic cortical malformations using multimodal MRI. In: Cardoso MJ, Arbel T, Carneiro G, et al, eds. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML‐CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings. Cham, Switzerland: Springer International Publishing, 2017: 349–356. |
91. | Adler S, Wagstyl K, Gunny R, et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. Neuroimage Clin, 2017, 14(1): 18-27. |
92. | Blumcke I, Arzimanoglou A, Beniczky S, et al. Roadmap for a competency‐based educational curriculum in epileptology: report of the Epilepsy Education Task Force of the International League Against Epilepsy. Epileptic Disord, 2019, 21(2): 129-140. |
- 1. Jones AL, Cascino GD. Evidence on use of neuroimaging for surgical treatment of temporal lobe epilepsy: a systematic review. JAMA Neurol, 2016, 73(3): 464-470.
- 2. Commission on Neuroimaging of the International League Against Epilepsy. Recommendations for neuroimaging of patients with epilepsy. Epilepsia, 1997, 38(6): 1255-1256.
- 3. Commission on Neuroimaging of the International League Against Epilepsy. Guidelines for neuroimaging evaluation of patients with uncontrolled epilepsy considered for surgery. Epilepsia, 1998, 39(6): 1375-1376.
- 4. Neuroimaging Subcommision of the International League Against Epilepsy. Commission on diagnostic strategies: recommendations for functional neuroimaging of persons with epilepsy. Epilepsia, 2000, 41(6): 1350-1356.
- 5. Gaillard WD, Chiron C, Cross JH, et al. Guidelines for imaging infants and children with recent‐onset epilepsy. Epilepsia, 2009, 50(9): 2147-2153.
- 6. Wilmshurst JM, Gaillard WD, Vinayan KP, et al. Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics. Epilepsia, 2015, 56(5): 1185-1197.
- 7. Engel J Jr, Wiebe S, French J, et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy. Epilepsia, 2003, 44(3): 741-751.
- 8. Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia, 2010, 51(5): 1069-1077.
- 9. Jehi L, Mathern GW. Who's responsible to refer for epilepsy surgery? We all are! Neurology, 2015, 84(1): 112-113.
- 10. Haneef Z, Stern J, Dewar S, Engel J Jr. Referral pattern for epilepsy surgery after evidence‐based recommendations: a retrospective study. Neurology, 2010, 75(4): 699-704.
- 11. Roberts JI, Hrazdil C, Wiebe S, et al. Neurologists’ knowledge of and attitudes toward epilepsy surgery: a national survey. Neurology, 2015, 84(2): 159-166.
- 12. Bernasconi A, Bernasconi N, Bernhardt BC, et al. Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol, 2011, 7(1): 99-108.
- 13. So EL, Lee RW. Epilepsy surgery in MRI-negative epilepsies. Curr Opin Neurol, 2014, 27(2): 206-212.
- 14. Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol, 2016, 15(2): 420-433.
- 15. Craven IJ, Griffiths PD, Bhattacharyya D, et al. 3.0 T MRI of 2000 consecutive patients with localisation‐related epilepsy. Br J Radiol, 2012, (85): 1236-1242.
- 16. Craven I, Griffiths PD, Hoggard N. Magnetic resonance imaging of epilepsy at 3 Tesla. Clin Radiol, 2011, 66(2): 278-286.
- 17. Jayakar P, Gaillard WD, Tripathi M, et al. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia, 2014, 55(3): 507-518.
- 18. Griffiths PD, Coley SC, Connolly DJ, et al. MR imaging of patients with localisation‐related seizures: initial experience at 3.0 T and relevance to the NICE guidelines. Clin Radiol, 2005, 60(5): 1090-10999.
- 19. Stylianou P, Kimchi G, Hoffmann C, et al. Neuroimaging for patient selection for medial temporal lobe epilepsy surgery. Part2: Functional neuroimaging. J Clin Neurosci, 2016, 23(1): 23-33.
- 20. Stylianou P, Hoffmann C, Blat I, et al. Neuroimaging for patient selection for medial temporal lobe epilepsy surgery. Part 1: Structural neuroimaging. J Clin Neurosci, 2016, 23(1): 14-22.
- 21. Duncan J. The current status of neuroimaging for epilepsy. Curr Opin Neurol, 2009, 22(1): 179-184.
- 22. Wellmer J, Quesada CM, Rothe L, et al. Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia, 2013, 54(8): 1977-1987.
- 23. Krumholz A, Wiebe S, Gronseth GS, et al. Evidence‐based guideline:management of an unprovoked first seizure in adults: report of the Guideline Development Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology, 2015, 84(7): 1705-1713.
- 24. Von Oertzen J, Urbach H, Jungbluth S, et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry, 2002, 73(3): 643-647.
- 25. Ruber T, David B, Elger CE. MRI in epilepsy: clinical standard and evolution. Curr Opin Neurol, 2018, 31(2): 223-231.
- 26. Hakami T, McIntosh A, Todaro M, et al. MRI‐identified pathology in adults with new‐onset seizures. Neurology, 2013, 81(4): 920-927.
- 27. Semah F, Picot MC, Adam C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology, 1998, 51(5): 1256-1262.
- 28. World Health Organization. Global maps for diagnostic imaging. 2014. Available at: https://www.who.int/diagnostic_imaging/collaboration/global_collab_maps/en/.
- 29. Harden CL, Huff JS, Schwartz TH, et al. Reassessment: neuroimaging in the emergency patient presenting with seizure (an evidence‐based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology, 2007, 69(8): 1772-1780.
- 30. Middlebrooks EH, Ver Hoef L, Szaflarski JP. Neuroimaging in epilepsy. Curr Neurol Neurosci Rep, 2017, 17(1): 32.
- 31. Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(3): 512-521.
- 32. Wiebe S, Jette N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol, 2012, 8(3): 669-677.
- 33. Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005‐2009. Epilepsia, 2010, 51(3): 676-685.
- 34. Blumcke I, Spreafico R, Haaker G, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med, 2017, 377(7): 1648-1656.
- 35. Eltze CM, Chong WK, Bhate S, et al. Taylor‐type focal cortical dysplasia in infants: some MRI lesions almost disappear with maturation of myelination. Epilepsia, 2005, 46(8): 1988-1992.
- 36. Engel J Jr. What can we do for people with drug‐resistant epilepsy? The 2016 Wartenberg Lecture. Neurology, 2016, 87(11): 2483-2489.
- 37. Labate A, Aguglia U, Tripepi G, et al. Long‐term outcome of mild mesial temporal lobe epilepsy: a prospective longitudinal cohort study. Neurology, 2016, 86(8): 1904-1910.
- 38. Tellez‐Zenteno JF, Hernandez Ronquillo L, Moien‐Afshari F, et al. Surgical outcomes in lesional and non‐lesional epilepsy: a systematic review and meta‐analysis. Epilepsy Res, 2010, 89(2): 310-318.
- 39. Simasathien T, Vadera S, Najm I, et al. Improved outcomes with earlier surgery for intractable frontal lobe epilepsy. Ann Neurol, 2013, 73(3): 646-654.
- 40. Cloppenborg T, May TW, Blumcke I, et al. Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. J Neurol Neurosurg Psychiatry, 2016, 87(6): 1322-1329.
- 41. Burneo JG, Shariff SZ, Liu K, et al. Disparities in surgery among patients with intractable epilepsy in a universal health system. Neurology, 2016, 86(1): 72-78.
- 42. Wiebe S. Burden of intractable epilepsy. Adv Neurol, 2006, 97(1): 1-4.
- 43. Nickels KC, Zaccariello MJ, Hamiwka LD, et al. Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat Rev Neurol, 2016, 12(3): 465-476.
- 44. Bernhardt BC, Kim H, Bernasconi N. Patterns of subregional mesiotemporal disease progression in temporal lobe epilepsy. Neurology, 2013, 81(8): 1840-1847.
- 45. Caciagli L, Bernasconi A, Wiebe S, et al. A meta‐analysis on progressive atrophy in intractable temporal lobe epilepsy: time is brain? Neurology, 2017, 89(3): 506-516.
- 46. Bernhardt BC, Worsley KJ, Kim H, et al. Longitudinal and cross‐sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology, 2009, 72(7): 1747-1754.
- 47. Bernhardt BC, Bernasconi N, Concha L, et al. Cortical thickness analysis in temporal lobe epilepsy: reproducibility and relation to outcome. Neurology, 2010, 74(7): 1776-1784.
- 48. Winston GP, Micallef C, Kendell BE, et al. The value of repeat neuroimaging for epilepsy at a tertiary referral centre: 16 years of experience. Epilepsy Res, 2013, 105(2): 349-355.
- 49. Kokkinos V, Kallifatidis A, Kapsalaki EZ, et al. Thin isotropic FLAIR MR images at 1.5 T increase the yield of focal cortical dysplasia transmantle sign detection in frontal lobe epilepsy. Epilepsy Res, 2017, 132(1): 1-7.
- 50. Mellerio C, Labeyrie MA, Chassoux F, et al. 3 T MRI improves the detection of transmantle sign in type 2 focal cortical dysplasia. Epilepsia, 2014, 55(1): 117-122.
- 51. Knake S, Triantafyllou C, Wald LL, et al. 3 T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology, 2005, 65(5): 1026-1031.
- 52. Hong SJ, Kim H, Schrader D, et al. Automated detection of cortical dysplasia type II in MRI‐negative epilepsy. Neurology, 2014, 83(1): 48-55.
- 53. Adler S, Hong SJ, Liu M, et al. Topographic principles of cortical fluid‐attenuated inversion recovery signal in temporal lobe epilepsy. Epilepsia, 2018, 59(3): 627-635.
- 54. Bernasconi N, Bernasconi A. Epilepsy: imaging the epileptic brain—time for new standards. Nat Rev Neurol, 2014, 10(1): 133-134.
- 55. Blumcke I, Thom M, Aronica E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE Commission on Diagnostic Methods. Epilepsia, 2013, 54(6): 1315-1329.
- 56. Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol, 2014, 40(3): 520-543.
- 57. Kulaga‐Yoskovitz J, Bernhardt BC, Hong SJ, et al. Multi‐contrast submillimetric 3 tesla hippocampal subfield segmentation protocol and dataset. Sci Data, 2015, 2: 150059.
- 58. Bernasconi N, Kinay D, Andermann F, et al. Analysis of shape and positioning of the hippocampal formation: an MRI study in patients with partial epilepsy and healthy controls. Brain, 2005, 128(2): 244-252.
- 59. Tsai MH, Vaughan DN, Perchyonok Y, et al. Hippocampal malrotation is an anatomic variant and has no clinical significance in MRI‐negative temporal lobe epilepsy. Epilepsia, 2016, 57(8): 1719-1728.
- 60. Abou‐Hamden A, Lau M, Fabinyi G, et al. Small temporal pole encephaloceles: a treatable cause of “lesion negative” temporal lobe epilepsy. Epilepsia, 2010, 51(12): 2199-2202.
- 61. Toledano R, Jimenez‐Huete A, Campo P, et al. Small temporal pole encephalocele: a hidden cause of “normal” MRI temporal lobe epilepsy. Epilepsia, 2016, 57(5): 841-851.
- 62. Saavalainen T, Jutila L, Mervaala E, et al. Temporal anteroinferior encephalocele: an underrecognized etiology of temporal lobe epilepsy? Neurology, 2015, 85(7): 1467-1474.
- 63. Pillay N, Fabinyi GC, Myles TS, et al. Parahippocampal epilepsy with subtle dysplasia: a cause of“imaging negative” partial epilepsy. Epilepsia, 2009, 50(12): 2611-2618.
- 64. Thompson SA, Kalamangalam GP, Tandon N. Intracranial evaluation and laser ablation for epilepsy with periventricular nodular heterotopia. Seizure, 2016, 41(2): 211-216.
- 65. Blumcke I, Thom M, Aronica E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission. Epilepsia, 2011, 52(2): 158-174.
- 66. Besson P, Andermann F, Dubeau F, et al. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain, 2008, 131(12): 3246-3255.
- 67. Martin P, Bender B, Focke NK. Post‐processing of structural MRI for individualized diagnostics. Quant Imaging Med Surg, 2015, 5(2): 188-203.
- 68. Kini LG, Gee JC, Litt B. Computational analysis in epilepsy neuroimaging:a survey of features and methods. Neuroimage Clin, 2016, 11(3): 515-529.
- 69. Bernasconi A, Bernasconi N. Unveiling epileptogenic lesions: the contribution of image processing. Epilepsia, 2011, 52(Suppl 4): 20-24.
- 70. Gaillard WD, Cross JH, Duncan JS, et al. Task Force on Practice Parameter Imaging Guidelines for International League Against Epilepsy, Commission for Diagnostics Epilepsy imaging study guideline criteria: commentary on diagnostic testing study guidelines and practice parameters. Epilepsia, 2011, 52(8): 1750-1756.
- 71. Bernasconi A, Antel SB, Collins DL, et al. Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra‐temporal partial epilepsy. Ann Neurol, 2001, 49(4): 770-775.
- 72. Colliot O, Bernasconi N, Khalili N, et al. Individual voxel‐based analysis of gray matter in focal cortical dysplasia. Neuroimage, 2006, 29(2): 162-171.
- 73. Wagner J, Weber B, Urbach H, et al. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain, 2011, 134(12): 2844-2854.
- 74. Huppertz HJ, Kurthen M, Kassubek J. Voxel‐based 3D MRI analysis for the detection of epileptogenic lesions at single subject level. Epilepsia, 2009, 50(1): 155-156.
- 75. Goubran M, Bernhardt BC, Cantor‐Rivera D, et al. In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy. Hum Brain Mapp, 2016, 37(6): 1103-1119.
- 76. Aghakhani Y, Liu X, Jette N, et al. Epilepsy surgery in patients with bilateral temporal lobe seizures: a systematic review. Epilepsia, 2014, 55(70): 1892-1901.
- 77. Sone D, Sato N, Maikusa N, et al. Automated subfield volumetric analysis of hippocampus in temporal lobe epilepsy using high‐resolution T2‐weighed MR imaging. Neuroimage Clin, 2016, 12(1): 57-64.
- 78. Hosseini MP, Nazem‐Zadeh MR, Pompili D, et al. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients. Med Phys, 2016, 43(3): 538.
- 79. Kim H, Mansi T, Bernasconi N, et al. Surface‐based multi‐template automated hippocampal segmentation: application to temporal lobe epilepsy. Med Image Anal, 2012, 16(7): 1445-1455.
- 80. Caldairou B, Bernhardt BC, Kulaga‐Yoskovitz J, et al. A Surface Patch‐Based Segmentation Method for Hippocampal Subfields. Cham, Switzerland: Springer International Publishing, 2016: 379-387.
- 81. Farid N, Girard HM, Kemmotsu N, et al. Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy. Radiology, 2012, 264(3): 542-550.
- 82. Kim H, Bernhardt BC, Kulaga‐Yoskovitz J, et al. Multivariate hippocampal subfield analysis of local MRI intensity and volume: application to temporal lobe epilepsy. Med Image Comput Comput Assist Interv, 2014, 17(2): 170-178.
- 83. Bernhardt BC, Bernasconi A, Liu M, et al. The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Ann Neurol, 2016, 80(1): 142-153.
- 84. Jackson GD, Kuzniecky RI, Cascino GD. Hippocampal sclerosis without detectable hippocampal atrophy. Neurology, 1994, 44(1): 42-46.
- 85. Kosior RK, Lauzon ML, Federico P, et al. Algebraic T2 estimation improves detection of right temporal lobe epilepsy by MR T2 relaxometry. Neuroimage, 2011, 58(2): 189-197.
- 86. Peixoto‐Santos JE, Kandratavicius L, Velasco TR, et al. Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy. Epilepsia, 2017, 58(1): 149-159.
- 87. Bernasconi A, Bernasconi N, Caramanos Z, et al. T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI. Neuroimage, 2000, 12(4): 739-746.
- 88. Winston GP, Vos SB, Burdett JL, et al. Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy. Epilepsia, 2017, 58(8): 1645-1652.
- 89. Hong S‐J, Bernhardt BC, Caldairou B, et al. Multimodal MRI profiling of focal cortical dysplasia type II. Neurology, 2017, 88(4): 734-742.
- 90. Gill RS, Hong SJ, Fadaie F, et al. Automated detection of epileptogenic cortical malformations using multimodal MRI. In: Cardoso MJ, Arbel T, Carneiro G, et al, eds. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML‐CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings. Cham, Switzerland: Springer International Publishing, 2017: 349–356.
- 91. Adler S, Wagstyl K, Gunny R, et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. Neuroimage Clin, 2017, 14(1): 18-27.
- 92. Blumcke I, Arzimanoglou A, Beniczky S, et al. Roadmap for a competency‐based educational curriculum in epileptology: report of the Epilepsy Education Task Force of the International League Against Epilepsy. Epileptic Disord, 2019, 21(2): 129-140.
-
Previous Article
癫痫患儿停药后复发影响因素的研究进展 -
Next Article
AMPA 受体及其拮抗剂在癫痫持续状态中的作用