1. |
中国抗癫痫协会. 临床诊疗指南: 癫痫病分册(2015 年修订版). 人民卫生出版社, 2015: 11.
|
2. |
Thijs RD, Surges R, O'Brien TJ, et al. Epilepsy in adults. The Lancet, 2019, 393(10172): 689-701.
|
3. |
Anderson GD, Hakimian S. Pharmacokinetic of antiepileptic drugs in patients with hepatic or renal impairment. Clinical pharmacokinetics, 2014, 53(1): 29-49.
|
4. |
Títoff V, Moury HN, Títoff IB, et al. Seizures, antiepileptic drugs, and CKD. American Journal of Kidney Diseases, 2019, 73(1): 90-101.
|
5. |
Ghane Shahrbaf F, Assadi F. Drug-induced renal disorders. J Renal Inj Prev, 2015, 4(3): 57-60.
|
6. |
Knights M, Thekkekkara T, Morris A, et al. Sodium valproate induced fanconi type proximal renal tubular acidosis: A case series. In: Pediatric Nephrology, 2015, 30: 1567-1567.
|
7. |
Gupta E, Kunjal R, Cury JD. Severe hyponatremia due to valproic acid toxicity. J Clin Med Res, 2015, 7(9): 717-719.
|
8. |
Dedinska I, Manka V, Sagova I, et al. Hyponatremia-carbamazepine medication complications]. Vnitr Lek, 2012, 58(1): 72-75.
|
9. |
Aksoy D, Cevik B, Kurt S, et al. Hypokalemia and hypomagnesaemia related to levetiracetam use. J Clin Neurosci, 2014, 21(11): 1989-1990.
|
10. |
Dell'Orto VG, Belotti EA, Goeggel-Simonetti B, et al. Metabolic disturbances and renal stone promotion on treatment with topiramate: a systematic review. Br J Clin Pharmacol, 2014, 77(6): 958-964.
|
11. |
Bloch KM, Sills GJ, Pirmohamed M, et al. Pharmacogenetics of antiepileptic drug-induced hypersensitivity. Pharmacogenomics, 2014, 15(6): 857-868.
|
12. |
Lakhoua G, Aouinti I, Sahnoun R, et al. A hemophagocytosis syndrome attributed to phenobarbital. Presse Med, 2016, 45(3): 379-381.
|
13. |
Brix Finnerup N, Hein Sindrup S, Staehelin Jensen T. Management of painful neuropathies. Handb Clin Neurol, 2013, 115: 279-290.
|
14. |
Asconapé JJ. Use of antiepileptic drugs in hepatic and renal disease//Handbook of Clinical Neurology. Elsevier, 2014, 119: 417-432.
|
15. |
Heidari R, Jafari F, Khodaei F, et al. The mechanism of valproic acid-induced fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney. Nephrology (Carlton), 2017, 23(4): 351-361.
|
16. |
Knights M, Thekkekkara T, Morris A, et al. Sodium valproate-induced Fanconi type proximal renal tubular acidosis. BMJ Case Rep, 2016: bcr2015213418.
|
17. |
Patel SM, Graff-Radford J, Wieland ML. Valproate-induced fanconi syndrome in a 27-year-old woman. Journal of General Internal Medicine, 2011, 26(9): 1072.
|
18. |
Bansal AD, Hill CE, Berns JS. Use of antiepileptic drugs in patients with chronic kidney disease and end stage renal disease. Semin Dial, 2015, 28(4): 404-412.
|
19. |
de Braganca AC, Moyses ZP, Magaldi AJ. Carbamazepine can induce kidney water absorption by increasing aquaporin 2 expression. Nephrol Dial Transplant, 2010, 25(12): 3840-3845.
|
20. |
Rodríguez KAM, Benbadis SR. Managing antiepileptic medication in dialysis patients. Current Treatment Options in Neurology, 2018, 20(11): 45.
|
21. |
Hurwitz KA, Ingulli EG, Krous HF. Levetiracetam induced interstitial nephritis and renal failure. Pediatr Neurol, 2009, 41(1): 57-58.
|
22. |
Spengler DC, Montouris GD, Hohler AD. Levetiracetam as a possible contributor to acute kidney injury. Clin Ther, 2014, 36(8): 1303-1306.
|
23. |
Kolomeyer AM, Kodati S. Lamotrigine-induced tubulointerstitial nephritis and uveitis-atypical cogan syndrome. Eur J Ophthalmol, 2015, 26(1): e14-16.
|
24. |
Matta A, Assalie NA, Gupta RK, et al. A rare case of lamotrigine-induced acute interstitial nephritis. J Community Hosp Intern Med Perspect, 2016, 6(6): 32976.
|
25. |
Manitpisitkul P, Curtin CR, Shalayda K, et al. Pharmacokinetics of topiramate in patients with renal impairment, end-stage renal disease undergoing hemodialysis, or hepatic impairment. Epilepsy Res, 2014, 108(5): 891-901.
|
26. |
Peltola J, Holtkamp M, Rocamora R, et al. Practical guidance and considerations for transitioning patients from oxcarbazepine or carbamazepine to eslicarbazepine acetate-expert opinion. Epilepsy Behav, 2015, 50: 46-49.
|
27. |
Rolnitsky A, Merlob P, Klinger G. In utero oxcarbazepine and a withdrawal syndrome, anomalies, and hyponatremia. Pediatr Neurol, 2013, 48(6): 466-468.
|
28. |
De Biase S, Valente M, Gigli GL, et al. Pharmacokinetic drug evaluation of lacosamide for the treatment of partial-onset seizures. Expert Opinion on Drug Metabolism & Toxicology, 2017, 13(9): 997-1005.
|
29. |
Cawello W, Fuhr U, Hering U, et al. Impact of impaired renal function on the pharmacokinetics of the anti-epileptic drug lacosamide. Clin Pharmacokinet, 2013, 52(10): 897-906.
|
30. |
Hamed SA. The effect of antiepileptic drugs on the kidney function and structure. Expert Review of Clinical Pharmacology, 2017, 10(9): 993-1006.
|
31. |
Cawello W, Stockis A, Andreas JO, et al. Advances in epilepsy treatment: lacosamide pharmacokinetic profile: lacosamide pharmacokinetics. Ann N Y Acad Sci, 2014, 1329: 18-32.
|
32. |
Li J, Sun M, Wang X. The adverse-effect profile of lacosamide. Expert Opinion on Drug Safety, 2020, 19(2): 131-138.
|
33. |
Rogawski MA, Hanada T. Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurol Scand, 2013, 127(Suppl 197): 19-24.
|
34. |
Franco V, Crema F, Iudice A, et al. Novel treatment options for epilepsy: focus on perampanel. Pharmacol Res, 2013, 70(1): 35-40.
|
35. |
Hanada T, Hashizume Y, Tokuhara N, et al. Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia, 2011, 52(7): 1331-1340.
|