1. |
Devinsky O, Vezzani A, O'Brien, TJ, et al. Epilepsy. Nat Rev Dis Primer, 2018, 4: 18024.
|
2. |
Dalic L, Cook MJ. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat, 2016, 12: 2605-2616.
|
3. |
Pitkanen A, Ekolle Ndode-Ekane X, Lapinlampi N, et al. Epilepsy biomarkers toward etiology and pathology specificity. Neurobiol Dis, 2019, 123: 42-58.
|
4. |
Pauletti A, Terrone G., Shekh-Ahmad T, et al Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain, 2019, 142(7): e38.
|
5. |
Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy. Nat Rev Neurol, 2019, 15: 459-472.
|
6. |
Vezzani A, Aronica E, Mazarati A, et al. Epilepsy and brain inflammation. Exp Neurol, 2013, 244(1): 11-21.
|
7. |
van Vliet EA, Aronica E, Vezzani A, et al. Neuroinflammatory pathways as treatment targets and biomarker candidates in epilepsy: emerging evidence from preclinical and clinical studies. Neuropathol Appl Neurobiol, 2018, 44(1): 91-111.
|
8. |
Klement W, Blaquiere M, Zub E, et al. A pericyte-glia scarring develops at the leaky capillaries in the hippocampus during seizure activity. Epilepsia, 2019, 60(7): 1399-1411.
|
9. |
Bauer J, Becker AJ, Elyaman W, et al. Innate and adaptive immunity in human epilepsies. Epilepsia, 2017, 58(Suppl. 3): 57-68.
|
10. |
Varvel NH, Neher JJ, Bosch A, et al. Infiltrating monocytes promote brain inflam-mation and exacerbate neuronal damage after status epilepticus. Proc. Natl. Acad. Sci. U. S. A, 2016, 113(38): E5665-E5674.
|
11. |
Ravizza T, Vezzani A. Pharmacological targeting of brain inflammation in epilepsy: therapeutic perspectives from experimental and clinical studies. Epilepsia Open, 2018, 3(S2): 133-142.
|
12. |
Iori V, Iyer AM, Ravizza T, et al. Blockade of the IL‐1R1/TLR4 pathway mediates disease modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis, 2017, 99: 12-23.
|
13. |
Zhao J, Wang Y, Xu C, et al. Therapeutic potential of an anti‐high mobility group box‐1 monoclonal antibody in epilepsy. Brain Behav Immun, 2017, 64: 308-319.
|
14. |
Dhir A. An update of cyclooxygenase (COX)-inhibitors in epilepsy disorders. Expert Opin Investig Drugs, 2019, 28(2): 191-205.
|
15. |
Rojas A, Jiang J, Ganesh T, et al. Cyclooxygenase-2 in epilepsy. Epilepsia, 2014, b, 55(1): 17-25.
|
16. |
Rojas A, Ganesh T, Wang W, et al. A rat model of organophosphate-induced status epilepticus and the beneficial effects of EP2 receptor inhibition. Neurobiol Dis, 2020, 133: 104399.
|
17. |
Balosso S, Maroso M, Sanchez-Alavez M, et al. A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1beta. Brain, 2008, 131(12): 3256-3265.
|
18. |
Balosso S, Liu J, Bianchi ME, et al. Disulfide-containing High Mobility Group Box-1 promotes N-methyl-d-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal, 2014, 21(12): 1726-1740.
|
19. |
Balosso S, Ravizza T, Pierucci M, et al. Molecular and functional interactions between TNFalpha receptors and the glutamatergic system in the mouse hippocampus: implications for seizure susceptibility. Neuroscience, 2009, 161(1): 293-300.
|
20. |
Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol, 2012, 33(1): 116-125.
|
21. |
Orioli E, De Marchi E, Giuliani AL, et al. P2X7receptor orchestrates multiple signalling pathways triggering inflammation, autophagy and metabolic/trophic responses. Curr Med Chem, 2017, 24(21): 2261-2275.
|
22. |
Roseti C, van Vliet EA, Cifelli P, et al. GABA currents are decreased by IL-1beta in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis, 2015, 82: 311-320.
|
23. |
Stellwagen D, Beattie EC, Seo JY, et al. Differential regulation ofAMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci, 2005, 25(12): 3219-3228.
|
24. |
Rojas A, Bueorguieva P, Lelutiu N, et al. The prostaglandin EP1 receptor potentiates kainate recptor activation via a protein kinase C pathway and exacerbates statusepilepticus. Neurobiol Dis, 2014a, 70: 74-89.
|
25. |
Jiang J, Dingledine R. Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci, 2013, 34(7): 413-423.
|
26. |
Bauer B, Hartz AM, Pekcec A, et al. Seizureinduced up-regulation of P- glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol, 2008, 73(5): 1444-1453.
|
27. |
Librizzi L, Noe F, Vezzani A, et al. Seizure-induced brainborne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann. Neurol, 2012, 72,(1): 82-90.
|
28. |
Weissberg I, Wood L, Kamintsky L, et al. Albumin induces excitatory synaptogenesis through astrocytic TGF-beta/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis, 2015, 78: 115-125.
|
29. |
Ravizza T, Terrone G, Salamone A, et al. High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun, 2018, 72: 14-21.
|
30. |
Cardenas-Rodriguez N, Coballase-Urrutia E, Perez-Cruz C, et al. Relevance of the glutathione system in temporal lobe epilepsy: evidence in human and experimental models. Oxid Med Cell Longev, 2014: 759293.
|
31. |
Pearson-Smith JN, Patel M. Metabolic dysfunction and oxidative stress in epilepsy. Int J Mol Sci, 2017, 18(11): 2365.
|
32. |
Shekh-Ahmad T, Eckel R, Dayalan Naidu S, et al. KEAP1 inhibition is neuroprotective and suppresses the development of epilepsy. Brain, 2018, 141(5): 1390-1403.
|
33. |
Diamond ML, Ritter AC, Failla MD, et al. IL-1beta associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia, 2014, 55(7): 1109-1119.
|
34. |
Wang KY, Yu GF, Zhang ZY, et al. Plasma high-mobility group box 1 levels and prediction of outcome in patients with traumatic brain injury. Clin Chim Acta Int J Clin Chem, 2012, 413(21-22): 1737-1741.
|
35. |
Kalita J, Misra UK, Singh LS, et al. Oxidative stress in status epilepticus: a clinical-radiological correlation. Brain Res, 2019, 1704: 85-93.
|
36. |
Lopez J, Gonzalez ME, Lorigados L, et al. Oxidative stress markers in surgically treated patients with refractory epilepsy. Clin Biochem, 2007, 40(5-6): 292-298.
|
37. |
Koepp MJ, Arstad E, Bankstahl JP, et al. Neuroinflammation imaging markers for epileptogenesis. Epilepsia, 2017, 58(Suppl. 3): 11-19.
|
38. |
Dilena R, Mauri E, Aronica E, et al. Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection–related epilepsy syndrome. Epilepsia Open, 2019, 4(2): 344-350.
|
39. |
Ben-Menachem E, Kyllerman M, Marklund S. Superoxide dismutase and glutathione peroxidase function in progressive myoclonus epilepsies. Epilepsy Res, 2000, 40(1): 33-39.
|
40. |
Wu Y, Dissing-Olesen L, MacVicar BA, et al. Microglia: Dynamic Mediators of Synapse Development and Plasticity. Trends Immunol, 2015, 36(10): 605-613.
|