1. |
Vezzani A. Before epilepsy unfolds: finding the epileptogenesis switch. Nature medicine, 2012, 18(11): 1626-1627.
|
2. |
Tian MJ, Wang RF, Hölscher C, et al. The novel GLP-1/GIP dual receptor agonist DA3-CH is neuroprotective in the pilocarpine-induced epileptogenesis rat model. Epilepsy research, 2019, 154: 97-106.
|
3. |
Wang RF, Xue GF, Hölscher C, et al. Post-treatment with the GLP-1 analogue liraglutide alleviate chronic inflammation and mitochondrial stress induced by status epilepticus. Epilepsy research, 2018, 142: 45-52.
|
4. |
Terrone G, Salamone A, Vezzani A. Inflammation and epilepsy: preclinical findings and potential clinical translation. Curr Pharm Des, 2017, 23(37): 5569-5576.
|
5. |
Webster KM, Sun M, Crack P, et al. Inflammation in epileptogenesis after traumatic brain injury. Journal of neuroinflammation, 2017, 14(1): 10.
|
6. |
Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nature reviews Neurology, 2019, 15(8): 459-472.
|
7. |
Michell-Robinson MA, Touil H, Healy LM, et al. Roles of microglia in brain development, tissue maintenance and repair. Brain, 2015, 138(5): 1138-1159.
|
8. |
Liu JT, Wu SX, Zhang H, et al. Inhibition of MyD88 signaling skews microglia/macrophage polarization and attenuates neuronal apoptosis in the hippocampus after status epilepticus in mice. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics, 2018, 15(4): 1093-1111.
|
9. |
Shi H, Wang XL, Quan HF, et al. Effects of betaine on LPS-stimulated activation of microglial M1/M2 phenotypes by suppressing TLR4/NF-κB pathways in N9 cells. Molecules (Basel, Switzerland), 2019, 24(2): 367.
|
10. |
Benson MJ, Manzanero S, Borges K. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia, 2015, 56(6): 895-905.
|
11. |
Andrzejczak D, Woldan-Tambor A, Bednarska K, et al. The effects of topiramate on lipopolysaccharide (LPS)-induced proinflammatory cytokine release from primary rat microglial cell cultures. Epilepsy research, 2016, 127: 352-357.
|
12. |
Zhao H, Zhu C, Huang D. Microglial activation: an important process in the onset of epilepsy. American journal of translational research, 2018, 10(9): 2877-2889.
|
13. |
Hiragi T, Ikegaya Y, Koyama R. Microglia after seizures and in epilepsy. Cells, 2018, 7(4).
|
14. |
Uludag IF, Duksal T, Tiftikcioglu BI, et al. IL-1beta, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure, 2015, 26: 22-25.
|
15. |
Fox P, Mithal DS, Somogyi JR, et al. Dexamethasone after early-life seizures attenuates increased susceptibility to seizures, seizure-induced microglia activation and neuronal injury later in life. Neuroscience Letters, 2020, 728: 134953.
|
16. |
Fu H, Cheng Y, Luo H, et al. Silencing microRNA-155 attenuates kainic acid-induced seizure by inhibiting microglia activation. Neuroimmunomodulation, 2019, 26(2): 67-76.
|
17. |
Bhandare AM, Kapoor K, Powell KL, et al. Inhibition of microglial activation with minocycline at the intrathecal level attenuates sympathoexcitatory and proarrhythmogenic changes in rats with chronic temporal lobe epilepsy. Neuroscience, 2017, 350: 23-38.
|
18. |
Kim M, Choi SY, Lee P, et al. Neochlorogenic acid inhibits lipopolysaccharide-induced activation and pro-inflammatory responses in BV2 microglial cells. Neurochemical research, 2015, 40(9): 1792-1798.
|
19. |
Zhao X, Liao Y, Morgan S, et al. Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell reports, 2018, 22(8): 2080-2093.
|
20. |
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638): 481-487.
|
21. |
Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis. The Journal of neuroscience: the official journal of the Society for Neuroscience, 2012, 32(18): 6391-6410.
|
22. |
Liu BH, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia, 2017, 65(8): 1205-1226.
|
23. |
Aoki Y, Hanai S, Sukigara S, et al. Altered expression of astrocyte-related receptors and channels correlates with epileptogenesis in hippocampal sclerosis. Pediatric and developmental pathology, 2019, 22(6): 532-539.
|
24. |
Wang X, Yang XL, Kong WL, et al. TRPV1 translocated to astrocytic membrane to promote migration and inflammatory infiltration thus promotes epilepsy after hypoxic ischemia in immature brain. Journal of neuroinflammation, 2019, 16(1): 214.
|
25. |
Wang X, Sha L, Sun N, et al. Deletion of mTOR in reactive astrocytes suppresses chronic seizures in a mouse model of temporal lobe epilepsy. Molecular neurobiology, 2017, 54(1): 175-187.
|
26. |
Hong S, JianCheng H, JiaWen W, et al. Losartan inhibits development of spontaneous recurrent seizures by preventing astrocyte activation and attenuating blood-brain barrier permeability following pilocarpine-induced status epilepticus. Brain research bulletin, 2019, 149: 251-259.
|
27. |
Shen Y, Qin H, Chen J, et al. Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. The Journal of cell biology, 2016, 215(5): 719-734.
|
28. |
Xiong XY, Wang TG, Yang MH, et al. Interleukin-21 expression in hippocampal astrocytes is enhanced following kainic acid-induced seizures. Neurological research, 2016, 38(2): 151-157.
|
29. |
Peterson AR, Binder DK. Regulation of synaptosomal GLT-1 and GLAST during epileptogenesis. Neuroscience, 2019, 411: 185-201.
|
30. |
Hubbard JA, Szu JI, Yonan JM, et al. Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Experimental neurology, 2016, 283(Pt A): 85-96.
|
31. |
Pascual O, Ben Achour S, Rostaing P, et al. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4): E197-205.
|
32. |
Xu X, Zhang A, Zhu Y, et al. MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-kappaB and PI3K-Akt pathways. Journal of cellular physiology, 2018, 234(1): 904-914.
|
33. |
Shinozaki Y, Shibata K, Yoshida K, et al. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell reports, 2017, 19(6): 1151-1164.
|
34. |
Bedner P, Steinhauser C. TNFalpha-driven astrocyte purinergic signaling during epileptogenesis. Trends in molecular medicine, 2019, 25(2): 70-72.
|
35. |
Norden DM, Fenn AM, Dugan A, et al. TGFbeta produced by IL-10 redirected astrocytes attenuates microglial activation. Glia, 2014, 62(6): 881-895.
|
36. |
Xu J, Dong H, Qian Q, et al. Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation. Behavioural brain research, 2017, 332: 145-153.
|
37. |
Bianco F, Pravettoni E, Colombo A, et al. Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. Journal of immunology (Baltimore, Md: 1950), 2005, 174(11): 7268-7277.
|
38. |
Wei Y, Chen T, Bosco DB, et al. The complement C3-C3aR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia, 2020, 69(5): 1155-1169.
|
39. |
Kano SI, Choi EY, Dohi E, et al. Glutathione S-transferases promote proinflammatory astrocyte-microglia communication during brain inflammation. Science signaling, 2019, 12(569): eaar2124.
|
40. |
Deshpande T, Li T, Henning L, et al. Constitutive deletion of astrocytic connexins aggravates kainate-induced epilepsy. Glia, 2020, 68(10): 2136-2147.
|