陈成,
Email: bainiandeshu@163.com
随着糖尿病(Diabetes mellitus,DM)和癫痫患病率的不断增加,两者共病的现象已不少见,且大量流行病学调查显示,DM 和癫痫存在相关性。目前,国内外对于癫痫共病 DM 的认识仍不充分。本文就流行病学、基因层面、DM 促进癫痫发病的机制以及两者分别与相关疗法或药物之间的关系等方面对癫痫和 DM 的相关性展开综述,并总结文献对癫痫共病 DM 的治疗提出建议,为早期识别和防治提供依据。
Citation: 陈成. 癫痫与糖尿病的相关性研究进展. Journal of Epilepsy, 2021, 7(4): 343-349. doi: 10.7507/2096-0247.20210056 Copy
1. | Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ, 2020, 369: m997. |
2. | Fiest KM, Sauro KM, Wiebe S, et al. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology, 2017, 88(3): 296-303. |
3. | Keezer MR, Novy J, Sander JW. Type 1 diabetes mellitus in people with Pharmacoresistant epilepsy: Prevalence and clinical characteristics. Epilepsy Res, 2015, 115: 55-57. |
4. | TiamkaoS, Pratipanawatr T, Tiamkao S, et al. Seizures in nonketotic hyperglycaemia perglycaemia. Seizure, 2003, 12(6): 409-410. |
5. | Schober E, Otto K P, Dost A, et al. Association of epilepsy and type 1 diabetes mellitus in children and adolescents: Is there an increased risk for diabetic ketoacidosis? J Pediatr, 2012, 160(4): 662-666. |
6. | Dafoulas GE, Toulis KA, Mccorry D, et al. Type 1 diabetes mellitus and risk of incidentpilepsy: apopulation-based, open-cohort study. Diabetologia, 2016, 60(2): 258-261. |
7. | Chou IC, Wang CH, Lin WD, et al. Risk of epilepsy in type 1 diabetes mellitus: a population-based cohort study. Diabetologia, 2016, 59(6): 1196-1203. |
8. | Mastrangelo M, Tromba V, Silvestri F, et al. Epilepsy in children withtype 1 diabetes mellitus: Pathophysiological basis and clinical hallmarks. Eur J Paediatr Neurol, 2019, 23(2): 240-247. |
9. | Yan D, Zhao E, Zhang H, et al. Associationbetween Type 1 diabetes mellitus and risk of epilepsy: A meta-analysis of observational studies. DrugDiscovTher, 2017, 11(3): 146-151. |
10. | Marcovecchio ML, Petrosino MI, Chiarelli F. Diabetes and epilepsy in children andadolescents. Curr Diab Rep, 2015, 15(4): 21. |
11. | Lu CL, Chang YH, Sun Y, et al. A population-based study of epilepsy incidence in association with type 2 diabetes and severe hypoglycaemia. Diabetes Research and Clinical Practice, 2018, 140: 97-106. |
12. | Mccorry D, Nicolson A, Smith D, et al. An association between type 1 diabetes and idiopathic generalized epilepsy. AnnNeurol, 2006, 59(1): 204-206. |
13. | Hamed SA. Leptin and insulin homeostasis in epilepsy: relation to weight adverse conditions. Epilepsy Res, 2007, 75(1): 1-9. |
14. | Doneray H, Houghton J, Tekgunduz KS, et al. Permanent neonatal diabetes mellitus caused by anovel mutation in the KCNJ11 gene. J Pediatr Endocrinol Metab, 2014, 27(3-4): 367-371. |
15. | Masia R, Koster JC, Tumini S, et al. An ATP-Binding Mutation (G334D) in KCNJ11 Is Associated With a Sulfonylurea-Insensitive Form of Developmental Delay, Epilepsy, and Neonatal Diabetes. Diabetes, 2007, 56(2): 328-336. |
16. | Poulton C, Schot R, Kia S, et al. Microcephaly with Simplified Gyration, Epilepsy, and Infantile Diabetes Linked to Inappropriate Apoptosis of NeuralProgenitors. AmJHumGenet, 2011, 89(2): 265-276. |
17. | Verrotti A, Scaparrotta A, Olivieri C, et al. Seizures and type 1 diabetes mellitus: current state of knowledge. Eur J Endocrinol, 2012, 167(6): 749-758. |
18. | Antony S, Kumar TP, Kuruvilla KP, et al. Decreased GABA receptor binding in the cerebral cortex of insulin induced Hypogly cemic and Streptozocin induced diabetes rats. Neurochem Res, 2010, 35(10): 1516-21. |
19. | Szeto V, Chen NH, Sun HS, et al. The role of KATP channels in cerebra ischemic stroke and diabetes. ActaPharmacolSin, 2018, 39(5): 683-694. |
20. | Herrmann W, Obeid R. Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med, 2011, 49(3): 435-41. |
21. | Gorgone G, Caccamo D, Pisani L R, et al. Hyperhomocysteinemia in patients with epilepsy: Does it play a role in the pathogenesis of brain atrophy? A preliminary report. Epilepsia, 2009, 50(1): 33-36. |
22. | Quan Y, Barszczyk A, Feng ZP, et al. Current understanding of KATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin, 2011, 32(6): 765-780. |
23. | Velísek L, Velísková J, Chudomel O, et al. Metabolic environment in substantia nigra reticulata is critical for the expression and controlof hypoglycemia-induced seizure. J Neurosci, 2008, 28(38): 9349-9362. |
24. | Lv RJ, He JS, Fu Y H, et al. ASIC1a polymorphism is associated with temporal lobe epilepsy. Epilepsy Res, 2011, 96(1-2): 74-80. |
25. | 魏东. 酸敏感离子通道 1a 的通道开放、药物调控及其在癫痫发生中的作用. 西安: 第四军医大学, 博士学位论文, 2015. |
26. | Wang YC, Li WZ, Wu Y, et al. Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons. J Neuroinflammation, 2015, 12: 246. |
27. | Ziemann AE, Schizler MK, Albert GW, et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci, 2008, 11(7): 816-822. |
28. | Cho JH, Askwith CC. Presynaptic ralease probability is increased inHippocampal neurons from ASIC1 knockout mice. J Neurophysiol, 2008, 99(2): 426-41. |
29. | Ievglevsky O, Isae D, Netsy O, et al. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possibleImplications for epilepsy. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700): 20150431. |
30. | 郭为. 酸敏感离子通道 1a 在大脑皮质发育不良病理发生中的作用研究. 重庆: 第三军医大学, 博士学位论文, 2014. |
31. | 陈勇, 葛金芳, 陈飞虎. 酸敏感离子通道 1a 在自身免疫性疾病发病机制中的研究进展. 中国药理学通报, 2018, 34(1): 12-15. |
32. | 张海涛. 海马区神经元葡萄糖低代谢在癫痫发生中的作用及机制研究. 西安: 第四军医大学, 博士学位论文, 2017. |
33. | Moloney TC, Idris I, Waters P, et al. Autoantibodies to glutamic acid decarboxylase in patients with epilepsy and their relationship with type 1 diabetes: a pilot study. J Neurol Neurosurg Psychiatry, 2016, 87(6): 676-677. |
34. | Liimatainen S, Honnorat J, Pittock SJ, et al. GAD65 autoantibody characteristics in patients with co-occurring type 1 diabetes and epilepsy may help identify underlying epilepsy etiologies. Orphanet J Rare Dis, 2018, 13(1): 55. |
35. | kash SF, Johnson RS, Tecott LH, et al. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Nat1 Acad Sci USA, 1997: 94. |
36. | Mahmoud AA, Abdelmagid T, Alghofely M, et al. Epilepsy in patients with insulin-dependent diabetes and relation to glutamic acid decarboxylase 65. Neurosciences, 2020, 25(3): 200-204. |
37. | Mitoma H, Song SY, Ishida K, et al. Presyhaptic impair ment of cerebellar inhibitory synapses by an auto antibody toglutamate decar boxylase. J Neurol Sci, 2000, 175: 40-44. |
38. | Tao H, Zhou X, Zhao B, et al. Conflicting effects of methylglyoxal and potential significance of miRNAs for seizure treatment. Front Mol Neurosci, 2018, 11: 70. |
39. | Byun K, Bayarsaikhan E, Kim D, et al. Activated microglial cells synthesize and secrete AGE-albumin. Ana Cell Biol, 2012, 45(1): 47-52. |
40. | Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr, 2017, 29(1): 1-16. |
41. | 刘卉, 姜振锋, 姚丽芬. 晚期糖基化终末产物受体与癫痫炎症机制相关性的研究. 脑与神经疾病杂志, 2019, 27(9): 592-595. |
42. | 陈胜利, 曹立荣, 纪盛章. 非酮症性高血糖脑部影像学表现. 临床放射学杂志, 2009, 28(2): 163-166. |
43. | Jin R, Jin ZG, Cai H. Influence of electroacupuncture plus jasminoidia intervention on expression of OX-42 and nuclear factor-kappa B in hippocampus and amygdale in cerebral ischemia plus diabetes rats. Acupuncture research, 2014, 39(4): 305-312. |
44. | Shlobin NA, Sander JW. Drivers for the comorbidity of type 2 diabetes mellitus and epilepsy: A scoping review. Epilepsy Behav, 2020, 106: 107043. |
45. | Miklossy J, McGeer PL. Common mechanisms involved in Alzheimer's disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY), 2016, 8(4): 575-588. |
46. | Vezzani A, Fujinami RS, White HS, et al. Infections, inflammation and epilepsy. Acta Neuropathol, 2016, 131(2): 211-234. |
47. | 杨华俊, 郭安臣, 王群. 癫痫的发病机制研究进展. 科技导报, 2017, 35(4): 54-59. |
48. | Jordan AJ, Manor B, Novak V. Slow gaitspeed-an indicator of lowercere bralvaso reactivity in type 2 diabetes mellitus. Frontiersin Aging Neuroscience, 2014, 6: 135. |
49. | Poittevin M, Bonnin P, Pimpie C, et al. Diabetic microangiopathy: Impact of impaired cerebral vasoreactivity and delayed angiogenesisafter permanent middle cerebral artery occlusion on stroke damage andcerebral repair in mice. Diabetes, 2015, 64(3): 999-1010. |
50. | 殷盛明, 刘纯青, 高溪, 等. 大鼠脑缺血对癫痫敏感性和脑内胶质原纤维酸性蛋白免疫反应的影响. 基础医学与临床, 2003, (1): 53-58. |
51. | Xia L, Lei Z, Shi Z, et al. Enhanced autophagy signaling in diabeticrats with ischemia-induced seizures. Brain Res. 2016, 1643: 18-26. |
52. | PrasadS, SajjaRK, NaikP, et al. Diabetes mellitus and blood-brain Barrier dysfunction: an overview. J Pharmacovigil, 2014, 2(2): 125. |
53. | Vavilala MS, Richards TL, Roberts JS, et al. Change in blood-brain barrier permeability during pediatric diabetic ketoacidosis treatment. Pediatric Critical Care Medicine, 2010, 11(3): 332-338. |
54. | Fouyas IP, Kelly PA, Ritchie IM, et al. Cerebrovascular responses to pathophysiological insult in diabetic cats. J Clin Neurosci, 2003, 10: 88-91. |
55. | Dadas A, Janigro D. Breakdown of blood brain barrier asa mechanism of post-traumatic epilepsy. Neurobiol Dis, 2019, 23: 20. |
56. | Abdullahi W, Brzica H, Hirsch NA, et al. Functional expression of organic anion transporting polypeptide 1a4Is regulated by transforming growth factor-β/activin rector-like kinase 1 signaling at the blood-brain barrier. MolPharmacol, 2018, 94(6): 1321. |
57. | Hawkins RA, O'kane RL, Simpson IA, et al. Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr, 2006, 136(1): 218-226. |
58. | 耿喜林, 徐明丽, 尹洁, 等. 糖尿病早期脑损伤与线粒体功能障碍. 中国病理生理杂志, 2012, 28(9): 1571-1576. |
59. | 姜东朗, 冯洪波, 邱湘哲, 等. 18F-FDGPET/CT 评价糖尿病前期患者脑葡萄糖代谢的改变. 中国医学影像技术, 2016, 32(8): 1184-1188. |
60. | Zilberter Y, Zilberter M. The vicious circle of hypometabolism inNeurodegenerative diseases: Ways and mechanisms of matabolic correction. JNeurosciRes, 2017, 95(11): 2217-2235. |
61. | Shima T, Jesmin S, Matsui T, et al. Differential effects of type 2 diabetes on brain glycometabolism in rats: focus on glycogen and monacarboxylate transporter 2. J Physiol Sci, 2018, 68(1): 69-75. |
62. | DiNuzzo M, Mangia S, Maraviglia B, et al. Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy. Metab Brain Dis, 2015, 30(1): 307-316. |
63. | Tricò D, Herzog RI. Metabolic brain adaptations to recurrent hypoglycaemia may explain the link between type 1 diabetes mellitus andepilepsy and point towards future study and treatment options. Diabetologia, 2017, 60(5): 938-939. |
64. | 王慧萌, 赵志刚. 血糖水平对糖尿病缺血性脑损伤影响研究进展. 中华实用诊断与治疗杂志, 2016, 30(2): 114-116. |
65. | 朱责梅, 杨丝丝, 伍迪, 等. 胰岛素抵抗与糖尿病脑病. 生理科学进展, 2016, 47(5): 395-400. |
66. | 周佳秀, 田绍文, 旷昕. 能量代谢在癫痫疾病中的研究进展. 新医学, 2019, 50(12): 881-885. |
67. | Stauss HM, Stangl H, Clark KC, et al. Cervical vagal nerve stimulation impairs glucose tolerance and suppresses insulin release in conscious rats. Physiol Rep, 2018, 6(24): e13953. |
68. | Meyers EE, Kronemberger A, Lira V, et al. Contrasting effects of afferent and efferent vagal nerve stimulation on insulin secretion and Blood glucose regulation. Physiol Rep, 2016, 4(4): e12718. |
69. | 江波, 邹大进, 马向华, 等. 生酮饮食干预2型糖尿病中国专家共识(2019年版). 实用临床医药杂志, 2019, 23(3): 1-6. |
70. | Bolla AM, Caretto A, Laurenzi A, et al. Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutrients, 2019, 11(5): 962. |
71. | Genc BO, Dogan EA, Dogan U, et al. Anthropometric indexes, insulin resistance, and serum leptin and lipid levels in women with cryptogenic Epilepsy receiving topiramate treatment. J Clin Neurosci, 2010, 17(10): 1256-1259. |
72. | Snyder MJ, Gibbs LM, Lindsay TJ. Treating painful diabetic peripheral neuropathy: An update. Am Fam Physician, 2016, 94(3): 227-234. |
73. | Lee JTC, Shanina I, Chu YN, et al. Carbamazepine, a beta-cell protecting Drug, reduces type 1 diabetes incidence in NOD mice. Sci Rep, 2018, 8(1): 4588. |
74. | Oda H, Okuda Y, Yoshida Y, et al. Phenobarbital reduces blood glucose and Gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats. Biochem Biophys Res Commun, 2015, 466(3): 306-311. |
75. | Fathallah N, Slim R, Larif S, et al. Drug-induced hyperglycaemia and diabetes. Drug Saf, 2015, 38(12): 1153-1168. |
76. | Verrotti A, laTorre R, Trotta D, et al. Valproate-induced insulin resistance and obesity in children. Horm Res, 2009, 71(3): 125-131. |
77. | 王莹, 宋凡. 非酮症高血糖性癫痫发作 15 例临床分析. 山东医药, 2012, 52(32): 48-50. |
78. | Peng S, Yang J, Wang Y, et al. Low-dose intranasal insulin improves cognitive function and suppresses the development of epilepsy. Brain Res, 2020, 1726: 146474. |
79. | O'Malley D, Shanley LJ, Harvey J. Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-Activated K+ channels. Neuropharmacology, 2003, 44(7): 855-863. |
80. | DeBundel D, Fafouri A, Csaba Z, et al. Trans-modulation of the somatostatin type 2A receptor trafficking by insulin-regulated aminopeptidase decreases limbic seizures. JNeurosci, 2015, 35(34): 11960-11975. |
81. | Wei X, Liu X, TanC, et al. Insulin attenuates epileptiform Discharge-induced oxidative stressby increasing zinc-α2-Glycoprotein in primary cultured cortical neurons. Neuro Report, 2019, 30(8): 580-585. |
82. | Nandini HS, Yam NP, Krishna KL. Envision in the neuro protective effect of Metformin in experimental epilepsy: A portrait of molecul arcrosstalk. Life Sciences, 2019, 233: 116686. |
83. | Okada K, Yamashita U, Tsuji S. Ameliorative effect of pioglitazone onseizure responses in genetically epilepsy-susceptible EL mice. BrainRes, 2006, 1102(1): 175-178. |
84. | Wong SB, Cheng SJ, Hung WC, et al. Rosiglitazone suppresses in hippocampal slice by inhibiting presynaptic glutamate release in a medelof temporal lobe epilepsy. PLos One, 2015, 10(12): e0144806. |
85. | Koshal P, Jamwal S, Kumar P. Glucagon-like Peptide-1(GLP-1) and neuro transmitters signaling in epilepsy: An insight review. Neuropharmacology, 2018, 136: 271-279. |
86. | 温跃桃, 吴昆仑, 石全红. 维格列汀通过上调胰高血糖素样肽 1 发挥抗癫痫作用. 南方医科大学学报, 2017, 37(1): 36-43. |
87. | 林镇洲. 格列本脲在大鼠癫痫持续状态脑水肿模型的神经保护作用及其机制研究. 广州: 南方医科大学, 博士学位论文, 2017. |
88. | Singh P, Rao SC, Parikh R. Neonatal diabetes with intractable epilepsy: DEND syndrome. Indian J Pediatr, 2014, 81(12): 1387-1388. |
89. | 王利柱. 托吡酯联合卡马西平治疗糖尿病合并癫痫患者的效果. 慢性病学杂志, 2020, 21(4): 558-560. |
90. | 曹建玺. 糖尿病合并癫痫持续状态 90 例临床观察. 糖尿病新世界, 2014, (12): 41. |
- 1. Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ, 2020, 369: m997.
- 2. Fiest KM, Sauro KM, Wiebe S, et al. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology, 2017, 88(3): 296-303.
- 3. Keezer MR, Novy J, Sander JW. Type 1 diabetes mellitus in people with Pharmacoresistant epilepsy: Prevalence and clinical characteristics. Epilepsy Res, 2015, 115: 55-57.
- 4. TiamkaoS, Pratipanawatr T, Tiamkao S, et al. Seizures in nonketotic hyperglycaemia perglycaemia. Seizure, 2003, 12(6): 409-410.
- 5. Schober E, Otto K P, Dost A, et al. Association of epilepsy and type 1 diabetes mellitus in children and adolescents: Is there an increased risk for diabetic ketoacidosis? J Pediatr, 2012, 160(4): 662-666.
- 6. Dafoulas GE, Toulis KA, Mccorry D, et al. Type 1 diabetes mellitus and risk of incidentpilepsy: apopulation-based, open-cohort study. Diabetologia, 2016, 60(2): 258-261.
- 7. Chou IC, Wang CH, Lin WD, et al. Risk of epilepsy in type 1 diabetes mellitus: a population-based cohort study. Diabetologia, 2016, 59(6): 1196-1203.
- 8. Mastrangelo M, Tromba V, Silvestri F, et al. Epilepsy in children withtype 1 diabetes mellitus: Pathophysiological basis and clinical hallmarks. Eur J Paediatr Neurol, 2019, 23(2): 240-247.
- 9. Yan D, Zhao E, Zhang H, et al. Associationbetween Type 1 diabetes mellitus and risk of epilepsy: A meta-analysis of observational studies. DrugDiscovTher, 2017, 11(3): 146-151.
- 10. Marcovecchio ML, Petrosino MI, Chiarelli F. Diabetes and epilepsy in children andadolescents. Curr Diab Rep, 2015, 15(4): 21.
- 11. Lu CL, Chang YH, Sun Y, et al. A population-based study of epilepsy incidence in association with type 2 diabetes and severe hypoglycaemia. Diabetes Research and Clinical Practice, 2018, 140: 97-106.
- 12. Mccorry D, Nicolson A, Smith D, et al. An association between type 1 diabetes and idiopathic generalized epilepsy. AnnNeurol, 2006, 59(1): 204-206.
- 13. Hamed SA. Leptin and insulin homeostasis in epilepsy: relation to weight adverse conditions. Epilepsy Res, 2007, 75(1): 1-9.
- 14. Doneray H, Houghton J, Tekgunduz KS, et al. Permanent neonatal diabetes mellitus caused by anovel mutation in the KCNJ11 gene. J Pediatr Endocrinol Metab, 2014, 27(3-4): 367-371.
- 15. Masia R, Koster JC, Tumini S, et al. An ATP-Binding Mutation (G334D) in KCNJ11 Is Associated With a Sulfonylurea-Insensitive Form of Developmental Delay, Epilepsy, and Neonatal Diabetes. Diabetes, 2007, 56(2): 328-336.
- 16. Poulton C, Schot R, Kia S, et al. Microcephaly with Simplified Gyration, Epilepsy, and Infantile Diabetes Linked to Inappropriate Apoptosis of NeuralProgenitors. AmJHumGenet, 2011, 89(2): 265-276.
- 17. Verrotti A, Scaparrotta A, Olivieri C, et al. Seizures and type 1 diabetes mellitus: current state of knowledge. Eur J Endocrinol, 2012, 167(6): 749-758.
- 18. Antony S, Kumar TP, Kuruvilla KP, et al. Decreased GABA receptor binding in the cerebral cortex of insulin induced Hypogly cemic and Streptozocin induced diabetes rats. Neurochem Res, 2010, 35(10): 1516-21.
- 19. Szeto V, Chen NH, Sun HS, et al. The role of KATP channels in cerebra ischemic stroke and diabetes. ActaPharmacolSin, 2018, 39(5): 683-694.
- 20. Herrmann W, Obeid R. Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med, 2011, 49(3): 435-41.
- 21. Gorgone G, Caccamo D, Pisani L R, et al. Hyperhomocysteinemia in patients with epilepsy: Does it play a role in the pathogenesis of brain atrophy? A preliminary report. Epilepsia, 2009, 50(1): 33-36.
- 22. Quan Y, Barszczyk A, Feng ZP, et al. Current understanding of KATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin, 2011, 32(6): 765-780.
- 23. Velísek L, Velísková J, Chudomel O, et al. Metabolic environment in substantia nigra reticulata is critical for the expression and controlof hypoglycemia-induced seizure. J Neurosci, 2008, 28(38): 9349-9362.
- 24. Lv RJ, He JS, Fu Y H, et al. ASIC1a polymorphism is associated with temporal lobe epilepsy. Epilepsy Res, 2011, 96(1-2): 74-80.
- 25. 魏东. 酸敏感离子通道 1a 的通道开放、药物调控及其在癫痫发生中的作用. 西安: 第四军医大学, 博士学位论文, 2015.
- 26. Wang YC, Li WZ, Wu Y, et al. Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons. J Neuroinflammation, 2015, 12: 246.
- 27. Ziemann AE, Schizler MK, Albert GW, et al. Seizure termination by acidosis depends on ASIC1a. Nat Neurosci, 2008, 11(7): 816-822.
- 28. Cho JH, Askwith CC. Presynaptic ralease probability is increased inHippocampal neurons from ASIC1 knockout mice. J Neurophysiol, 2008, 99(2): 426-41.
- 29. Ievglevsky O, Isae D, Netsy O, et al. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possibleImplications for epilepsy. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700): 20150431.
- 30. 郭为. 酸敏感离子通道 1a 在大脑皮质发育不良病理发生中的作用研究. 重庆: 第三军医大学, 博士学位论文, 2014.
- 31. 陈勇, 葛金芳, 陈飞虎. 酸敏感离子通道 1a 在自身免疫性疾病发病机制中的研究进展. 中国药理学通报, 2018, 34(1): 12-15.
- 32. 张海涛. 海马区神经元葡萄糖低代谢在癫痫发生中的作用及机制研究. 西安: 第四军医大学, 博士学位论文, 2017.
- 33. Moloney TC, Idris I, Waters P, et al. Autoantibodies to glutamic acid decarboxylase in patients with epilepsy and their relationship with type 1 diabetes: a pilot study. J Neurol Neurosurg Psychiatry, 2016, 87(6): 676-677.
- 34. Liimatainen S, Honnorat J, Pittock SJ, et al. GAD65 autoantibody characteristics in patients with co-occurring type 1 diabetes and epilepsy may help identify underlying epilepsy etiologies. Orphanet J Rare Dis, 2018, 13(1): 55.
- 35. kash SF, Johnson RS, Tecott LH, et al. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Nat1 Acad Sci USA, 1997: 94.
- 36. Mahmoud AA, Abdelmagid T, Alghofely M, et al. Epilepsy in patients with insulin-dependent diabetes and relation to glutamic acid decarboxylase 65. Neurosciences, 2020, 25(3): 200-204.
- 37. Mitoma H, Song SY, Ishida K, et al. Presyhaptic impair ment of cerebellar inhibitory synapses by an auto antibody toglutamate decar boxylase. J Neurol Sci, 2000, 175: 40-44.
- 38. Tao H, Zhou X, Zhao B, et al. Conflicting effects of methylglyoxal and potential significance of miRNAs for seizure treatment. Front Mol Neurosci, 2018, 11: 70.
- 39. Byun K, Bayarsaikhan E, Kim D, et al. Activated microglial cells synthesize and secrete AGE-albumin. Ana Cell Biol, 2012, 45(1): 47-52.
- 40. Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr, 2017, 29(1): 1-16.
- 41. 刘卉, 姜振锋, 姚丽芬. 晚期糖基化终末产物受体与癫痫炎症机制相关性的研究. 脑与神经疾病杂志, 2019, 27(9): 592-595.
- 42. 陈胜利, 曹立荣, 纪盛章. 非酮症性高血糖脑部影像学表现. 临床放射学杂志, 2009, 28(2): 163-166.
- 43. Jin R, Jin ZG, Cai H. Influence of electroacupuncture plus jasminoidia intervention on expression of OX-42 and nuclear factor-kappa B in hippocampus and amygdale in cerebral ischemia plus diabetes rats. Acupuncture research, 2014, 39(4): 305-312.
- 44. Shlobin NA, Sander JW. Drivers for the comorbidity of type 2 diabetes mellitus and epilepsy: A scoping review. Epilepsy Behav, 2020, 106: 107043.
- 45. Miklossy J, McGeer PL. Common mechanisms involved in Alzheimer's disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY), 2016, 8(4): 575-588.
- 46. Vezzani A, Fujinami RS, White HS, et al. Infections, inflammation and epilepsy. Acta Neuropathol, 2016, 131(2): 211-234.
- 47. 杨华俊, 郭安臣, 王群. 癫痫的发病机制研究进展. 科技导报, 2017, 35(4): 54-59.
- 48. Jordan AJ, Manor B, Novak V. Slow gaitspeed-an indicator of lowercere bralvaso reactivity in type 2 diabetes mellitus. Frontiersin Aging Neuroscience, 2014, 6: 135.
- 49. Poittevin M, Bonnin P, Pimpie C, et al. Diabetic microangiopathy: Impact of impaired cerebral vasoreactivity and delayed angiogenesisafter permanent middle cerebral artery occlusion on stroke damage andcerebral repair in mice. Diabetes, 2015, 64(3): 999-1010.
- 50. 殷盛明, 刘纯青, 高溪, 等. 大鼠脑缺血对癫痫敏感性和脑内胶质原纤维酸性蛋白免疫反应的影响. 基础医学与临床, 2003, (1): 53-58.
- 51. Xia L, Lei Z, Shi Z, et al. Enhanced autophagy signaling in diabeticrats with ischemia-induced seizures. Brain Res. 2016, 1643: 18-26.
- 52. PrasadS, SajjaRK, NaikP, et al. Diabetes mellitus and blood-brain Barrier dysfunction: an overview. J Pharmacovigil, 2014, 2(2): 125.
- 53. Vavilala MS, Richards TL, Roberts JS, et al. Change in blood-brain barrier permeability during pediatric diabetic ketoacidosis treatment. Pediatric Critical Care Medicine, 2010, 11(3): 332-338.
- 54. Fouyas IP, Kelly PA, Ritchie IM, et al. Cerebrovascular responses to pathophysiological insult in diabetic cats. J Clin Neurosci, 2003, 10: 88-91.
- 55. Dadas A, Janigro D. Breakdown of blood brain barrier asa mechanism of post-traumatic epilepsy. Neurobiol Dis, 2019, 23: 20.
- 56. Abdullahi W, Brzica H, Hirsch NA, et al. Functional expression of organic anion transporting polypeptide 1a4Is regulated by transforming growth factor-β/activin rector-like kinase 1 signaling at the blood-brain barrier. MolPharmacol, 2018, 94(6): 1321.
- 57. Hawkins RA, O'kane RL, Simpson IA, et al. Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr, 2006, 136(1): 218-226.
- 58. 耿喜林, 徐明丽, 尹洁, 等. 糖尿病早期脑损伤与线粒体功能障碍. 中国病理生理杂志, 2012, 28(9): 1571-1576.
- 59. 姜东朗, 冯洪波, 邱湘哲, 等. 18F-FDGPET/CT 评价糖尿病前期患者脑葡萄糖代谢的改变. 中国医学影像技术, 2016, 32(8): 1184-1188.
- 60. Zilberter Y, Zilberter M. The vicious circle of hypometabolism inNeurodegenerative diseases: Ways and mechanisms of matabolic correction. JNeurosciRes, 2017, 95(11): 2217-2235.
- 61. Shima T, Jesmin S, Matsui T, et al. Differential effects of type 2 diabetes on brain glycometabolism in rats: focus on glycogen and monacarboxylate transporter 2. J Physiol Sci, 2018, 68(1): 69-75.
- 62. DiNuzzo M, Mangia S, Maraviglia B, et al. Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy. Metab Brain Dis, 2015, 30(1): 307-316.
- 63. Tricò D, Herzog RI. Metabolic brain adaptations to recurrent hypoglycaemia may explain the link between type 1 diabetes mellitus andepilepsy and point towards future study and treatment options. Diabetologia, 2017, 60(5): 938-939.
- 64. 王慧萌, 赵志刚. 血糖水平对糖尿病缺血性脑损伤影响研究进展. 中华实用诊断与治疗杂志, 2016, 30(2): 114-116.
- 65. 朱责梅, 杨丝丝, 伍迪, 等. 胰岛素抵抗与糖尿病脑病. 生理科学进展, 2016, 47(5): 395-400.
- 66. 周佳秀, 田绍文, 旷昕. 能量代谢在癫痫疾病中的研究进展. 新医学, 2019, 50(12): 881-885.
- 67. Stauss HM, Stangl H, Clark KC, et al. Cervical vagal nerve stimulation impairs glucose tolerance and suppresses insulin release in conscious rats. Physiol Rep, 2018, 6(24): e13953.
- 68. Meyers EE, Kronemberger A, Lira V, et al. Contrasting effects of afferent and efferent vagal nerve stimulation on insulin secretion and Blood glucose regulation. Physiol Rep, 2016, 4(4): e12718.
- 69. 江波, 邹大进, 马向华, 等. 生酮饮食干预2型糖尿病中国专家共识(2019年版). 实用临床医药杂志, 2019, 23(3): 1-6.
- 70. Bolla AM, Caretto A, Laurenzi A, et al. Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutrients, 2019, 11(5): 962.
- 71. Genc BO, Dogan EA, Dogan U, et al. Anthropometric indexes, insulin resistance, and serum leptin and lipid levels in women with cryptogenic Epilepsy receiving topiramate treatment. J Clin Neurosci, 2010, 17(10): 1256-1259.
- 72. Snyder MJ, Gibbs LM, Lindsay TJ. Treating painful diabetic peripheral neuropathy: An update. Am Fam Physician, 2016, 94(3): 227-234.
- 73. Lee JTC, Shanina I, Chu YN, et al. Carbamazepine, a beta-cell protecting Drug, reduces type 1 diabetes incidence in NOD mice. Sci Rep, 2018, 8(1): 4588.
- 74. Oda H, Okuda Y, Yoshida Y, et al. Phenobarbital reduces blood glucose and Gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats. Biochem Biophys Res Commun, 2015, 466(3): 306-311.
- 75. Fathallah N, Slim R, Larif S, et al. Drug-induced hyperglycaemia and diabetes. Drug Saf, 2015, 38(12): 1153-1168.
- 76. Verrotti A, laTorre R, Trotta D, et al. Valproate-induced insulin resistance and obesity in children. Horm Res, 2009, 71(3): 125-131.
- 77. 王莹, 宋凡. 非酮症高血糖性癫痫发作 15 例临床分析. 山东医药, 2012, 52(32): 48-50.
- 78. Peng S, Yang J, Wang Y, et al. Low-dose intranasal insulin improves cognitive function and suppresses the development of epilepsy. Brain Res, 2020, 1726: 146474.
- 79. O'Malley D, Shanley LJ, Harvey J. Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-Activated K+ channels. Neuropharmacology, 2003, 44(7): 855-863.
- 80. DeBundel D, Fafouri A, Csaba Z, et al. Trans-modulation of the somatostatin type 2A receptor trafficking by insulin-regulated aminopeptidase decreases limbic seizures. JNeurosci, 2015, 35(34): 11960-11975.
- 81. Wei X, Liu X, TanC, et al. Insulin attenuates epileptiform Discharge-induced oxidative stressby increasing zinc-α2-Glycoprotein in primary cultured cortical neurons. Neuro Report, 2019, 30(8): 580-585.
- 82. Nandini HS, Yam NP, Krishna KL. Envision in the neuro protective effect of Metformin in experimental epilepsy: A portrait of molecul arcrosstalk. Life Sciences, 2019, 233: 116686.
- 83. Okada K, Yamashita U, Tsuji S. Ameliorative effect of pioglitazone onseizure responses in genetically epilepsy-susceptible EL mice. BrainRes, 2006, 1102(1): 175-178.
- 84. Wong SB, Cheng SJ, Hung WC, et al. Rosiglitazone suppresses in hippocampal slice by inhibiting presynaptic glutamate release in a medelof temporal lobe epilepsy. PLos One, 2015, 10(12): e0144806.
- 85. Koshal P, Jamwal S, Kumar P. Glucagon-like Peptide-1(GLP-1) and neuro transmitters signaling in epilepsy: An insight review. Neuropharmacology, 2018, 136: 271-279.
- 86. 温跃桃, 吴昆仑, 石全红. 维格列汀通过上调胰高血糖素样肽 1 发挥抗癫痫作用. 南方医科大学学报, 2017, 37(1): 36-43.
- 87. 林镇洲. 格列本脲在大鼠癫痫持续状态脑水肿模型的神经保护作用及其机制研究. 广州: 南方医科大学, 博士学位论文, 2017.
- 88. Singh P, Rao SC, Parikh R. Neonatal diabetes with intractable epilepsy: DEND syndrome. Indian J Pediatr, 2014, 81(12): 1387-1388.
- 89. 王利柱. 托吡酯联合卡马西平治疗糖尿病合并癫痫患者的效果. 慢性病学杂志, 2020, 21(4): 558-560.
- 90. 曹建玺. 糖尿病合并癫痫持续状态 90 例临床观察. 糖尿病新世界, 2014, (12): 41.
-
Previous Article
肌阵挛与肌阵挛癫痫 -
Next Article
拉考沙胺和吡仑帕奈单药治疗癫痫的研究进展