1. |
Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med, 2011, 365: 919-926.
|
2. |
Wyllie E. Surgical treatment of epilepsy in children. Pediatr Neurol, 1998, 19(1): 179-188.
|
3. |
Gonzalez-Martinez J, Mullin J, Bulacio J, et al. Stereoelectroencephalography in children and adolescents withdifficult-to-localize refractory focal epilepsy. Neurosurgery, 2014, 75(3): 258-268.
|
4. |
McGovern RA, Knight EP, Gupta A, et al. Robot-assisted stereoelectroencephalographyin children. J Neurosurg Pediatr, 2018, 23: 288-296.
|
5. |
Huppertz H-J, Grimm C, Fauser S, et al. Enhanced visualization ofblurred gray–white matter junctions in focal cortical dysplasia byvoxel-based 3D MRI analysis. Epilepsy Res, 2005, 67(1): 35-50.
|
6. |
Wagner J, Weber B, Urbach H, et al. Morphometric MRI analysis improves detection of focal corticaldysplasia type II. Brain, 2011, 134: 2844-2854.
|
7. |
Wang ZI, Jones SE, Jaisani Z, et al. Voxel-based morphometricmagnetic resonance imaging (MRI) postprocessing in MRInegativeepilepsies. Ann Neurol, 2015, 77: 1060-1075.
|
8. |
Hong SJ, Kim H, Schrader D, Bernasconi N, Bernhardt BC, Bernasconi A. Automated detection of cortical dysplasia type II inMRI-negative epilepsy. Neurology, 2014, 83(1): 48-55.
|
9. |
Adler S, Wagstyl K, Gunny R, et al. Novel surface features for automateddetection of focal cortical dysplasias in paediatric epilepsy. Neuroimage Clin, 2017, 14(1): 18-27.
|
10. |
Hoyos-Osorio K, álvarez AM, Orozco áA, et al. Clustering-based undersampling to supportautomatic detection of focal cortical dysplasias. In: MendozaM, Velastín S, editors Progress in Pattern Recognition, ImageAnalysis, Computer Vision, and Applications. Cham, Switzerland: Springer, 2017: 298-305.
|
11. |
Jin B, Krishnan B, Adler S, et al. Automated detection of focalcortical dysplasia type II with surface-based magnetic resonanceimaging postprocessing and machine learning. Epilepsia, 2018, 59(4): 982-992.
|
12. |
Mo JJ, Zhang JG, Li WL, et al. Clinical value of machine learningin the automated detection of focal cortical dysplasia usingquantitative multimodal surface-based features. Front Neurosci, 2018, 12: 1008.
|
13. |
Fischl B. FreeSurfer. Neuroimage, 2012, 62(3): 774-781.
|
14. |
Greve DN, Van der Haegen L, Cai Q, et al. A surface-based analysisof language lateralization and cortical asymmetry. J Cogn Neurosci, 2013, 25(6): 1477-1492.
|
15. |
Sharma JD, Seunarine KK, Tahir MZ, et al. Accuracy ofrobot-assisted versus optical frameless navigated stereoelectroencephalographyelectrode placement in children. J Neurosurg Pediatr, 2019, 23(2): 297-302.
|
16. |
Jenkinson M, Bannister P, Brady M, et al. Improved optimizationfor the robust and accurate linear registration and motioncorrection of brain images. Neuroimage, 2002, 17(5): 825-841.
|
17. |
Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functionaland structural MR image analysis and implementation asFSL. Neuroimage, 2004, 23(Suppl): 208-219.
|
18. |
Kikinis R, Pieper SD, Vosburgh KG. 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz FA, ed. Intraoperative Imaging and Image-Guided Therapy. New York, NY: Springer, 2014: 277–289.
|
19. |
Narizzano M, Arnulfo G, Ricci S, et al. SEEG assistant: a 3DSlicerextension to support epilepsy surgery. BMC Bioinformatics, 2017, 18(1): 124.
|
20. |
Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographicseizure-onset patterns: effect of underlying pathology. Brain, 2014, 137(1): 183-196.
|
21. |
Lagarde S, Buzori S, Trebuchon A, et al. The repertoire of seizureonset patterns in human focal epilepsies: determinants and prognosticvalues. Epilepsia, 2019, 60(1): 85-95.
|
22. |
David O, Blauwblomme T, Job AS, et al. Imaging the seizureonset zone with stereo-electroencephalography. Brain, 2011, 134(11): 2898-2911.
|
23. |
Abraham A, Pedregosa F, Eickenberg M, et al. Machine learningfor neuroimaging with scikit-learn. Front Neuroinform, 2014, 8(1): 14.
|
24. |
Allen M, Poggiali D, Whitaker K, et al. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res, 2019, 4(1): 63.
|
25. |
Adler S, Blackwood M, Northam GB, et al. Multimodal computationalneocortical anatomy in pediatric hippocampal sclerosis. AnnClin Transl Neurol, 2018, 5(5): 1200-1210.
|
26. |
McGovern RA, Ruggieri P, Bulacio J, et al. Risk analysis of hemorrhage in stereo-electroencephalography procedures. Epilepsia, 2019, 60(3): 571-580.
|
27. |
Adler S, Hong SJ, Liu M, et al. Topographic principles of corticalfluid-attenuated inversion recovery signal in temporal lobe epilepsy. Epilepsia, 2018, 5(5): 627-635.
|
28. |
Galovic M, van Dooren VQH, Postma T, et al. Progressive corticalthinning in patients with focal epilepsy. JAMA Neurol, 2019, 76(10): 1230.
|
29. |
Adler S, Whitaker K, Semmelroch M, et al. Multi-centre EpilepsyLesion Detection (MELD) project: conducting clinical research inan open-science framework. f1000research. 2018.
|
30. |
Rosen BE. Ensemble learning using decorrelated neural networks. Conn Sci, 1996, 8: 373-384.
|
31. |
Cucurull G, Wagstyl K, Casanova A, et al. Convolutional neuralnetworks for mesh-based parcellation of the cerebral cortex. 2018. [cited 2018 Jun 14]. Available from https://openr eview.net/pdf?id=rkKvB Aiiz.
|