1. |
Webster K M, Sun M, Crack P, et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation, 2017, 14(1): 10.
|
2. |
Ravizza T, Terrone G, Salamone A, et al. High mobility group box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun, 2018, 72: 14-21.
|
3. |
Carrillo GL, Ballard VA, Glausen T, et al. Toxoplasma infection induces microglianeuron contact and the loss of perisomatic inhibitory synapses. Glia, 2020, 68(10): 1968-1986.
|
4. |
Weidner LD, Kannan P, Mitsios N, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia, 2018, 59(8): 1507-1517.
|
5. |
Chong SA, Balosso S, Vandenplas C, et al. Intrinsic inflammation is a potential anti-epileptogenic target in the organotypic hippocampal slice model. Neurotherapeutics, 2018, 15(2): 470-488.
|
6. |
Lei S, He Y, Zhu Z, et al. Inhibition of NMDA receptors downregulates astrocytic AQP to suppress seizures. Cell Mol Neurobiol, 2020, 40(8): 1283-1295.
|
7. |
Zhu X, Liu J, Chen O, et al. Neuroprotective and anti-inflammatory effects of isoliquiritigen in kainic acid-induced epileptic rats via the TLR4/MYD88 signaling pathway. Inflammopharmacology, 2019, 27(6): 1143-1153.
|
8. |
Geis C, Planaguma J, Carreno M, et al. Autoimmune seizures and epilepsy. J Clin Invest, 2019, 129(3): 926-940.
|
9. |
Varvel NH, Espinosa-Garcia C, Hunter-Chang S, et al. Peripheral myeloid cell EP2 activation contributes to the deleterious consequences of status epilepticus. J Neurosci, 2021, 41(5): 1105-1117.
|
10. |
Kothur K, Bandodkar S, Wienholt L, et al. Etiology is the key determinant of neuroinflammation in epilepsy: Elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. Epilepsia, 2019, 60(8): 1678-1688.
|
11. |
Gao B, Wu Y, Yang Y J, et al. Sinomenine exerts anticonvulsant profile and neuroprotective activity in pentylenetetrazole kindled rats: involvement of inhibition of NLRP1 inflammasome. J Neuroinflammation, 2018, 15(1): 152.
|
12. |
Li TR, Jia Y J, Ma C, et al. The role of the microRNA-146a/complement factor H/interleukin-1beta-mediated inflammatory loop circuit in the perpetuate inflammation of chronic temporal lobe epilepsy. Dis Model Mech, 2018, 11(3): dmm031708.
|
13. |
Bianchi M E. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol, 2007, 81(1): 1-5.
|
14. |
Kamasak T, Dilber B, Yaman S O, et al. HMGB-1, TLR4, IL-1R1, TNF-alpha, and IL-1beta: novel epilepsy markers? Epileptic Disord, 2020, 22(2): 183-193.
|
15. |
Liu AH, Wu YT, Li LP, et al. The roles of interleukin-1 and RhoA signaling pathway in rat epilepsy model treated with low-frequency electrical stimulation. J Cell Biochem, 2018, 119(3): 2535-2544.
|
16. |
Maroso M, Balosso S, Ravizza T, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med, 2010, 16(4): 413-419.
|
17. |
Iori V, Iyer A M, Ravizza T, et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis, 2017, 99(1): 2-23.
|
18. |
Lai Y C, Muscal E, Wells E, et al. Anakinra usage in febrile infection related epilepsy syndrome: an international cohort. Ann Clin Transl Neurol, 2020, 7(12): 2467-2474.
|
19. |
Dyomina AV, Zubareva OE, Smolensky IV, et al. Anakinra reduces epileptogenesis, provides neuroprotection, and attenuates behavioral impairments in rats in the lithium-pilocarpine model of epilepsy. Pharmaceuticals (Basel), 2020, 13(11): 340.
|
20. |
Coleman LG, Jr., Zou J, Qin L, et al HMGB1/IL-1beta complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun, 2018, 72: 61-77.
|
21. |
Ying C, Ying L, Yanxia L, et al. High mobility group box 1 antibody represses autophagy and alleviates hippocampus damage in pilocarpine-induced mouse epilepsy model. Acta Histochem, 2020, 122(2): 151485.
|
22. |
Vezzani A, Aronica E, Mazarati A, et al. Epilepsy and brain inflammation. Exp Neurol, 2013, 244: 11-21.
|
23. |
Zhu M, Chen J, Guo H, et al. High mobility group protein B1 (HMGB1) and interleukin-1β as prognostic biomarkers of epilepsy in children. Journal of Child Neurology, 2018, 33(14): 909-917.
|
24. |
Kawada N, Moriyama T, Kitamura H, et al. Towards developing new strategies to reduce the adverse side-effects of nonsteroidal anti-inflammatory drugs. Clin Exp Nephrol, 2012, 16(1): 25-29.
|
25. |
Morales-Sosa M, Orozco-Suarez S, Vega-Garcia A, et al. Immunomodulatory effect of Celecoxib on HMGB1/TLR4 pathway in a recurrent seizures model in immature rats. Pharmacol Biochem Behav, 2018, 170: 79-86.
|
26. |
Holtman L, van Vliet E A, Edelbroek P M, et al. Cox-2 inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res, 2010, 91(1): 49-56.
|
27. |
Radu B M, Epureanu F B, Radu M, et al. Nonsteroidal anti-inflammatory drugs in clinical and experimental epilepsy. Epilepsy Res, 2017, 131: 15-27.
|
28. |
Kovacs Z, D'Agostino D P, Diamond D M, et al. Exogenous ketone supplementation decreased the Lipopolysaccharide-Induced increase in absence epileptic activity in Wistar albino glaxo rijswijk rats. Front Mol Neurosci, 2019, 12: 45.
|
29. |
Lim JA, Jung KY, Park B, et al. Impact of a selective cyclooxygenase-2 inhibitor, celecoxib, on cortical excitability and electrophysiological properties of the brain in healthy volunteers: A randomized, double-blind, placebo-controlled study. PLoS One, 2019, 14(2): e0212689.
|
30. |
Senatorov VVJr, Friedman AR, Milikovsky DZ, et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med, 2019, 11(521): eaaw8283.
|
31. |
Arnold TD, Lizama CO, Cautivo KM, et al. Impaired alphaVbeta8 and TGFbeta signaling lead to microglial dysmaturation and neuromotor dysfunction. J Exp Med, 2019, 216(4): 900-915.
|
32. |
Nikolic L, Shen W, Nobili P, et al. Blocking TNFalpha-driven astrocyte purinergic signaling restores normal synaptic activity during epileptogenesis. Glia, 2018, 66(12): 2673-2683.
|
33. |
Riazi K, Galic MA, Kuzmiski JB, et al. Microglial activation and TNFalpha productionmediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A, 2008, 105(44): 17151-17156.
|
34. |
Lagarde S, Villeneuve N, Trebuchon A, et al. Anti-tumor necrosis factor alpha therapy (adalimumab) in Rasmussen's encephalitis: An open pilot study. Epilepsia, 2016, 57(6): 956-966.
|
35. |
Cerri C, Caleo M and Bozzi Y. Chemokines as new inflammatory players in the pathogenesis of epilepsy. Epilepsy Res, 2017, 136: 77-83.
|
36. |
Foresti ML, Arisi GM, Campbell JJ, et al. Treatment with CCR2 antagonist is neuroprotective but does not alter epileptogenesis in the pilocarpine rat model of epilepsy. Epilepsy & Behavior, 2020, 102: 106695.
|
37. |
Bozzi Y and Caleo M. Epilepsy, seizures, and inflammation: Role of the C-C motif ligand 2 chemokine. DNA Cell Biol, 2016, 35(6): 257-260.
|
38. |
Zhou Z, Liu T, Sun X, et al. CXCR4 antagonist AMD3100 reverses the neurogenesis pro-moted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy. Behav Brain Res, 2017, 322(Pt A): 83-91.
|